Timezone: »
Bayesian optimization (BO) is a popular approach to optimize expensive-to-evaluate black-box functions. A significant challenge in BO is to scale to high-dimensional parameter spaces while retaining sample efficiency. A solution considered in existing literature is to embed the high-dimensional space in a lower-dimensional manifold, often via a random linear embedding. In this paper, we identify several crucial issues and misconceptions about the use of linear embeddings for BO. We study the properties of linear embeddings from the literature and show that some of the design choices in current approaches adversely impact their performance. We show empirically that properly addressing these issues significantly improves the efficacy of linear embeddings for BO on a range of problems, including learning a gait policy for robot locomotion.
Author Information
Ben Letham (Facebook)
Roberto Calandra (Facebook AI Research)
Akshara Rai (Facebook)
Eytan Bakshy (Facebook)
More from the Same Authors
-
2020 Workshop: 3rd Robot Learning Workshop »
Masha Itkina · Alex Bewley · Roberto Calandra · Igor Gilitschenski · Julien PEREZ · Ransalu Senanayake · Markus Wulfmeier · Vincent Vanhoucke -
2020 Workshop: Meta-Learning »
Jane Wang · Joaquin Vanschoren · Erin Grant · Jonathan Schwarz · Francesco Visin · Jeff Clune · Roberto Calandra -
2020 Poster: Differentiable Expected Hypervolume Improvement for Parallel Multi-Objective Bayesian Optimization »
Samuel Daulton · Maximilian Balandat · Eytan Bakshy -
2020 Poster: BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization »
Maximilian Balandat · Brian Karrer · Daniel Jiang · Samuel Daulton · Ben Letham · Andrew Wilson · Eytan Bakshy -
2020 Poster: High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization »
Qing Feng · Ben Letham · Hongzi Mao · Eytan Bakshy -
2020 Spotlight: High-Dimensional Contextual Policy Search with Unknown Context Rewards using Bayesian Optimization »
Qing Feng · Ben Letham · Hongzi Mao · Eytan Bakshy -
2020 Poster: 3D Shape Reconstruction from Vision and Touch »
Edward Smith · Roberto Calandra · Adriana Romero · Georgia Gkioxari · David Meger · Jitendra Malik · Michal Drozdzal -
2019 Workshop: Robot Learning: Control and Interaction in the Real World »
Roberto Calandra · Markus Wulfmeier · Kate Rakelly · Sanket Kamthe · Danica Kragic · Stefan Schaal · Markus Wulfmeier -
2019 Workshop: Meta-Learning »
Roberto Calandra · Ignasi Clavera Gilaberte · Frank Hutter · Joaquin Vanschoren · Jane Wang -
2018 Poster: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Spotlight: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2017 Workshop: Workshop on Meta-Learning »
Roberto Calandra · Frank Hutter · Hugo Larochelle · Sergey Levine -
2016 Workshop: Bayesian Optimization: Black-box Optimization and Beyond »
Roberto Calandra · Bobak Shahriari · Javier Gonzalez · Frank Hutter · Ryan Adams -
2015 Workshop: Bayesian Optimization: Scalability and Flexibility »
Bobak Shahriari · Ryan Adams · Nando de Freitas · Amar Shah · Roberto Calandra