Timezone: »
Estimating counterfactual outcome of different treatments from observational data is an important problem to assist decision making in a variety of fields. Among the various forms of treatment specification, bundle treatment has been widely adopted in many scenarios, such as recommendation systems and online marketing. The bundle treatment usually can be abstracted as a high dimensional binary vector, which makes it more challenging for researchers to remove the confounding bias in observational data. In this work, we assume the existence of low dimensional latent structure underlying bundle treatment. Via the learned latent representations of treatments, we propose a novel variational sample re-weighting (VSR) method to eliminate confounding bias by decorrelating the treatments and confounders. Finally, we conduct extensive experiments to demonstrate that the predictive model trained on this re-weighted dataset can achieve more accurate counterfactual outcome prediction.
Author Information
Hao Zou (Tsinghua University)
Peng Cui (Tsinghua University)
Bo Li (Tsinghua University)
Zheyan Shen (Tsinghua University)
Jianxin Ma (Alibaba Group)
Hongxia Yang (Alibaba Group)
Yue He (Tsinghua University)
More from the Same Authors
-
2022 Poster: ZIN: When and How to Learn Invariance Without Environment Partition? »
Yong Lin · Shengyu Zhu · Lu Tan · Peng Cui -
2022 Poster: Product Ranking for Revenue Maximization with Multiple Purchases »
Renzhe Xu · Xingxuan Zhang · Bo Li · Yafeng Zhang · Xiaolong Chen · Peng Cui -
2022 Spotlight: Lightning Talks 5B-4 »
Yuezhi Yang · Zeyu Yang · Yong Lin · Yishi Xu · Linan Yue · Tao Yang · Weixin Chen · Qi Liu · Jiaqi Chen · Dongsheng Wang · Baoyuan Wu · Yuwang Wang · Hao Pan · Shengyu Zhu · Zhenwei Miao · Yan Lu · Lu Tan · Bo Chen · Yichao Du · Haoqian Wang · Wei Li · Yanqing An · Ruiying Lu · Peng Cui · Nanning Zheng · Li Wang · Zhibin Duan · Xiatian Zhu · Mingyuan Zhou · Enhong Chen · Li Zhang -
2022 Spotlight: ZIN: When and How to Learn Invariance Without Environment Partition? »
Yong Lin · Shengyu Zhu · Lu Tan · Peng Cui -
2022 Spotlight: Lightning Talks 3A-2 »
shuwen yang · Xu Zhang · Delvin Ce Zhang · Lan-Zhe Guo · Renzhe Xu · Zhuoer Xu · Yao-Xiang Ding · Weihan Li · Xingxuan Zhang · Xi-Zhu Wu · Zhenyuan Yuan · Hady Lauw · Yu Qi · Yi-Ge Zhang · Zhihao Yang · Guanghui Zhu · Dong Li · Changhua Meng · Kun Zhou · Gang Pan · Zhi-Fan Wu · Bo Li · Minghui Zhu · Zhi-Hua Zhou · Yafeng Zhang · Yingxueff Zhang · shiwen cui · Jie-Jing Shao · Zhanguang Zhang · Zhenzhe Ying · Xiaolong Chen · Yu-Feng Li · Guojie Song · Peng Cui · Weiqiang Wang · Ming GU · Jianye Hao · Yihua Huang -
2022 Spotlight: Product Ranking for Revenue Maximization with Multiple Purchases »
Renzhe Xu · Xingxuan Zhang · Bo Li · Yafeng Zhang · Xiaolong Chen · Peng Cui -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: Distributionally Robust Optimization with Data Geometry »
Jiashuo Liu · Jiayun Wu · Bo Li · Peng Cui -
2022 Poster: Distributionally Robust Optimization with Data Geometry »
Jiashuo Liu · Jiayun Wu · Bo Li · Peng Cui -
2021 Poster: CogView: Mastering Text-to-Image Generation via Transformers »
Ming Ding · Zhuoyi Yang · Wenyi Hong · Wendi Zheng · Chang Zhou · Da Yin · Junyang Lin · Xu Zou · Zhou Shao · Hongxia Yang · Jie Tang -
2021 Poster: Integrated Latent Heterogeneity and Invariance Learning in Kernel Space »
Jiashuo Liu · Zheyuan Hu · Peng Cui · Bo Li · Zheyan Shen -
2021 Poster: UFC-BERT: Unifying Multi-Modal Controls for Conditional Image Synthesis »
Zhu Zhang · Jianxin Ma · Chang Zhou · Rui Men · Zhikang Li · Ming Ding · Jie Tang · Jingren Zhou · Hongxia Yang -
2020 Poster: CogLTX: Applying BERT to Long Texts »
Ming Ding · Chang Zhou · Hongxia Yang · Jie Tang -
2019 Poster: Learning Disentangled Representations for Recommendation »
Jianxin Ma · Chang Zhou · Peng Cui · Hongxia Yang · Wenwu Zhu