Timezone: »
We present an efficient and practical (polynomial time) algorithm for online prediction in unknown and partially observed linear dynamical systems (LDS) under stochastic noise. When the system parameters are known, the optimal linear predictor is the Kalman filter. However, in unknown systems, the performance of existing predictive models is poor in important classes of LDS that are only marginally stable and exhibit long-term forecast memory. We tackle this problem by bounding the generalized Kolmogorov width of the Kalman filter coefficient set. This motivates the design of an algorithm, which we call spectral LDS improper predictor (SLIP), based on conducting a tight convex relaxation of the Kalman predictive model via spectral methods. We provide a finite-sample analysis, showing that our algorithm competes with the Kalman filter in hindsight with only logarithmic regret. Our regret analysis relies on Mendelson’s small-ball method, providing sharp error bounds without concentration, boundedness, or exponential forgetting assumptions. Empirical evaluations demonstrate that SLIP outperforms state-of-the-art methods in LDS prediction. Our theoretical and experimental results shed light on the conditions required for efficient probably approximately correct (PAC) learning of the Kalman filter from partially observed data.
Author Information
Paria Rashidinejad (University of California, Berkeley)
Jiantao Jiao (University of California, Berkeley)
Stuart Russell (UC Berkeley)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: SLIP: Learning to Predict in Unknown Dynamical Systems with Long-Term Memory »
Tue. Dec 8th 05:00 -- 07:00 PM Room Poster Session 1 #412
More from the Same Authors
-
2021 Spotlight: Uncertain Decisions Facilitate Better Preference Learning »
Cassidy Laidlaw · Stuart Russell -
2021 : An Empirical Investigation of Representation Learning for Imitation »
Cynthia Chen · Sam Toyer · Cody Wild · Scott Emmons · Ian Fischer · Kuang-Huei Lee · Neel Alex · Steven Wang · Ping Luo · Stuart Russell · Pieter Abbeel · Rohin Shah -
2021 : Cross-Domain Imitation Learning via Optimal Transport »
Arnaud Fickinger · Samuel Cohen · Stuart Russell · Brandon Amos -
2022 : Adversarial Policies Beat Professional-Level Go AIs »
Tony Wang · Adam Gleave · Nora Belrose · Tom Tseng · Michael Dennis · Yawen Duan · Viktor Pogrebniak · Joseph Miller · Sergey Levine · Stuart Russell -
2022 Poster: Beyond the Best: Distribution Functional Estimation in Infinite-Armed Bandits »
Yifei Wang · Tavor Baharav · Yanjun Han · Jiantao Jiao · David Tse -
2022 Poster: Minimax Optimal Online Imitation Learning via Replay Estimation »
Gokul Swamy · Nived Rajaraman · Matt Peng · Sanjiban Choudhury · J. Bagnell · Steven Wu · Jiantao Jiao · Kannan Ramchandran -
2021 : BASALT: A MineRL Competition on Solving Human-Judged Task + Q&A »
Rohin Shah · Cody Wild · Steven Wang · Neel Alex · Brandon Houghton · William Guss · Sharada Mohanty · Stephanie Milani · Nicholay Topin · Pieter Abbeel · Stuart Russell · Anca Dragan -
2021 Poster: Scalable Online Planning via Reinforcement Learning Fine-Tuning »
Arnaud Fickinger · Hengyuan Hu · Brandon Amos · Stuart Russell · Noam Brown -
2021 Poster: Uncertain Decisions Facilitate Better Preference Learning »
Cassidy Laidlaw · Stuart Russell -
2021 Poster: Bridging Offline Reinforcement Learning and Imitation Learning: A Tale of Pessimism »
Paria Rashidinejad · Banghua Zhu · Cong Ma · Jiantao Jiao · Stuart Russell -
2021 Poster: On the Value of Interaction and Function Approximation in Imitation Learning »
Nived Rajaraman · Yanjun Han · Lin Yang · Jingbo Liu · Jiantao Jiao · Kannan Ramchandran -
2021 Poster: MADE: Exploration via Maximizing Deviation from Explored Regions »
Tianjun Zhang · Paria Rashidinejad · Jiantao Jiao · Yuandong Tian · Joseph Gonzalez · Stuart Russell -
2020 Workshop: Navigating the Broader Impacts of AI Research »
Carolyn Ashurst · Rosie Campbell · Deborah Raji · Solon Barocas · Stuart Russell -
2020 Poster: Toward the Fundamental Limits of Imitation Learning »
Nived Rajaraman · Lin Yang · Jiantao Jiao · Kannan Ramchandran -
2020 Poster: The MAGICAL Benchmark for Robust Imitation »
Sam Toyer · Rohin Shah · Andrew Critch · Stuart Russell -
2020 Poster: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Oral: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2019 Workshop: Information Theory and Machine Learning »
Shengjia Zhao · Jiaming Song · Yanjun Han · Kristy Choi · Pratyusha Kalluri · Ben Poole · Alex Dimakis · Jiantao Jiao · Tsachy Weissman · Stefano Ermon -
2018 Poster: Meta-Learning MCMC Proposals »
Tongzhou Wang · YI WU · Dave Moore · Stuart Russell -
2018 Poster: Learning Plannable Representations with Causal InfoGAN »
Thanard Kurutach · Aviv Tamar · Ge Yang · Stuart Russell · Pieter Abbeel