Timezone: »
Despite the great success of deep learning, recent works show that large deep neural networks are often highly redundant and can be significantly reduced in size. However, the theoretical question of how much we can prune a neural network given a specified tolerance of accuracy drop is still open. This paper provides one answer to this question by proposing a greedy optimization based pruning method. The proposed method has the guarantee that the discrepancy between the pruned network and the original network decays with exponentially fast rate w.r.t. the size of the pruned network, under weak assumptions that apply for most practical settings. Empirically, our method improves prior arts on pruning various network architectures including ResNet, MobilenetV2/V3 on ImageNet.
Author Information
Mao Ye (The University of Texas at Austin)
Lemeng Wu (UT Austin)
Qiang Liu (UT Austin)
More from the Same Authors
-
2022 : BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Mao Ye · Bo Liu · Stephen Wright · Peter Stone · Qiang Liu -
2022 : Diffusion-based Molecule Generation with Informative Prior Bridges »
Chengyue Gong · Lemeng Wu · Xingchao Liu · Mao Ye · Qiang Liu -
2022 : First hitting diffusion models »
Mao Ye · Lemeng Wu · Qiang Liu -
2022 : Neural Volumetric Mesh Generator »
Yan Zheng · Lemeng Wu · Xingchao Liu · Zhen Chen · Qiang Liu · Qixing Huang -
2022 : Let us Build Bridges: Understanding and Extending Diffusion Generative Models »
Xingchao Liu · Lemeng Wu · Mao Ye · Qiang Liu -
2022 Poster: First Hitting Diffusion Models for Generating Manifold, Graph and Categorical Data »
Mao Ye · Lemeng Wu · Qiang Liu -
2022 Poster: BOME! Bilevel Optimization Made Easy: A Simple First-Order Approach »
Bo Liu · Mao Ye · Stephen Wright · Peter Stone · Qiang Liu -
2022 Poster: Diffusion-based Molecule Generation with Informative Prior Bridges »
Lemeng Wu · Chengyue Gong · Xingchao Liu · Mao Ye · Qiang Liu -
2021 Poster: argmax centroid »
Chengyue Gong · Mao Ye · Qiang Liu -
2020 Poster: Stein Self-Repulsive Dynamics: Benefits From Past Samples »
Mao Ye · Tongzheng Ren · Qiang Liu -
2020 Poster: Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework »
Dinghuai Zhang · Mao Ye · Chengyue Gong · Zhanxing Zhu · Qiang Liu -
2020 Poster: Certified Monotonic Neural Networks »
Xingchao Liu · Xing Han · Na Zhang · Qiang Liu -
2020 Spotlight: Certified Monotonic Neural Networks »
Xingchao Liu · Xing Han · Na Zhang · Qiang Liu -
2020 Poster: Firefly Neural Architecture Descent: a General Approach for Growing Neural Networks »
Lemeng Wu · Bo Liu · Peter Stone · Qiang Liu -
2020 Poster: Off-Policy Interval Estimation with Lipschitz Value Iteration »
Ziyang Tang · Yihao Feng · Na Zhang · Jian Peng · Qiang Liu -
2019 : Poster and Coffee Break 2 »
Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 Poster: A Kernel Loss for Solving the Bellman Equation »
Yihao Feng · Lihong Li · Qiang Liu -
2019 Poster: Splitting Steepest Descent for Growing Neural Architectures »
Lemeng Wu · Dilin Wang · Qiang Liu -
2019 Spotlight: Splitting Steepest Descent for Growing Neural Architectures »
Lemeng Wu · Dilin Wang · Qiang Liu -
2019 Poster: Stein Variational Gradient Descent With Matrix-Valued Kernels »
Dilin Wang · Ziyang Tang · Chandrajit Bajaj · Qiang Liu -
2019 Poster: Exploration via Hindsight Goal Generation »
Zhizhou Ren · Kefan Dong · Yuan Zhou · Qiang Liu · Jian Peng -
2018 Poster: Variational Inference with Tail-adaptive f-Divergence »
Dilin Wang · Hao Liu · Qiang Liu -
2018 Oral: Variational Inference with Tail-adaptive f-Divergence »
Dilin Wang · Hao Liu · Qiang Liu -
2018 Poster: Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation »
Qiang Liu · Lihong Li · Ziyang Tang · Denny Zhou -
2018 Spotlight: Breaking the Curse of Horizon: Infinite-Horizon Off-Policy Estimation »
Qiang Liu · Lihong Li · Ziyang Tang · Denny Zhou -
2018 Poster: Stein Variational Gradient Descent as Moment Matching »
Qiang Liu · Dilin Wang