Timezone: »
We study the question of obtaining last-iterate convergence rates for no-regret learning algorithms in multi-player games. We show that the optimistic gradient (OG) algorithm with a constant step-size, which is no-regret, achieves a last-iterate rate of O(1/√T) with respect to the gap function in smooth monotone games. This result addresses a question of Mertikopoulos & Zhou (2018), who asked whether extra-gradient approaches (such as OG) can be applied to achieve improved guarantees in the multi-agent learning setting. The proof of our upper bound uses a new technique centered around an adaptive choice of potential function at each iteration. We also show that the O(1/√T) rate is tight for all p-SCLI algorithms, which includes OG as a special case. As a byproduct of our lower bound analysis we additionally present a proof of a conjecture of Arjevani et al. (2015) which is more direct than previous approaches.
Author Information
Noah Golowich (Massachusetts Institute of Technology)
Sarath Pattathil (Massachusetts Institute of Technology)
Constantinos Daskalakis (MIT)
More from the Same Authors
-
2021 Spotlight: Littlestone Classes are Privately Online Learnable »
Noah Golowich · Roi Livni -
2021 : Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 : Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2021 : Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 : Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2022 Poster: What is a Good Metric to Study Generalization of Minimax Learners? »
Asuman Ozdaglar · Sarath Pattathil · Jiawei Zhang · Kaiqing Zhang -
2022 Poster: Learning in Observable POMDPs, without Computationally Intractable Oracles »
Noah Golowich · Ankur Moitra · Dhruv Rohatgi -
2021 : Spotlight 4: Estimation of Standard Asymmetric Auction Models »
Yeshwanth Cherapanamjeri · Constantinos Daskalakis · Andrew Ilyas · Emmanouil Zampetakis -
2021 Poster: Deep Learning with Label Differential Privacy »
Badih Ghazi · Noah Golowich · Ravi Kumar · Pasin Manurangsi · Chiyuan Zhang -
2021 Poster: Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2021 Poster: Littlestone Classes are Privately Online Learnable »
Noah Golowich · Roi Livni -
2021 Poster: Efficient Truncated Linear Regression with Unknown Noise Variance »
Constantinos Daskalakis · Patroklos Stefanou · Rui Yao · Emmanouil Zampetakis -
2021 Oral: Near-Optimal No-Regret Learning in General Games »
Constantinos Daskalakis · Maxwell Fishelson · Noah Golowich -
2020 : Poster Session 2 (gather.town) »
Sharan Vaswani · Nicolas Loizou · Wenjie Li · Preetum Nakkiran · Zhan Gao · Sina Baghal · Jingfeng Wu · Roozbeh Yousefzadeh · Jinyi Wang · Jing Wang · Cong Xie · Anastasia Borovykh · Stanislaw Jastrzebski · Soham Dan · Yiliang Zhang · Mark Tuddenham · Sarath Pattathil · Ievgen Redko · Jeremy Cohen · Yasaman Esfandiari · Zhanhong Jiang · Mostafa ElAraby · Chulhee Yun · Michael Psenka · Robert Gower · Xiaoyu Wang -
2020 Poster: Truncated Linear Regression in High Dimensions »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Poster: Constant-Expansion Suffices for Compressed Sensing with Generative Priors »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Spotlight: Constant-Expansion Suffices for Compressed Sensing with Generative Priors »
Constantinos Daskalakis · Dhruv Rohatgi · Emmanouil Zampetakis -
2020 Poster: Independent Policy Gradient Methods for Competitive Reinforcement Learning »
Constantinos Daskalakis · Dylan Foster · Noah Golowich -
2018 : Improving Generative Adversarial Networks using Game Theory and Statistics »
Constantinos Daskalakis -
2018 Poster: Learning and Testing Causal Models with Interventions »
Jayadev Acharya · Arnab Bhattacharyya · Constantinos Daskalakis · Saravanan Kandasamy -
2018 Poster: Smoothed Analysis of Discrete Tensor Decomposition and Assemblies of Neurons »
Nima Anari · Constantinos Daskalakis · Wolfgang Maass · Christos Papadimitriou · Amin Saberi · Santosh Vempala -
2018 Poster: HOGWILD!-Gibbs can be PanAccurate »
Constantinos Daskalakis · Nishanth Dikkala · Siddhartha Jayanti -
2018 Poster: The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization »
Constantinos Daskalakis · Ioannis Panageas -
2017 Poster: Concentration of Multilinear Functions of the Ising Model with Applications to Network Data »
Constantinos Daskalakis · Nishanth Dikkala · Gautam Kamath -
2015 Poster: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath -
2015 Spotlight: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath