Timezone: »
Safety in terms of collision avoidance for multi-robot systems is a difficult challenge under uncertainty, non-determinism, and lack of complete information. This paper aims to propose a collision avoidance method that accounts for both measurement uncertainty and motion uncertainty. In particular, we propose Probabilistic Safety Barrier Certificates (PrSBC) using Control Barrier Functions to define the space of admissible control actions that are probabilistically safe with formally provable theoretical guarantee. By formulating the chance constrained safety set into deterministic control constraints with PrSBC, the method entails minimally modifying an existing controller to determine an alternative safe controller via quadratic programming constrained to PrSBC constraints. The key advantage of the approach is that no assumptions about the form of uncertainty are required other than finite support, also enabling worst-case guarantees. We demonstrate effectiveness of the approach through experiments on realistic simulation environments.
Author Information
Wenhao Luo (Carnegie Mellon University)
Wen Sun (Cornell University)
Ashish Kapoor (Microsoft)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Multi-Robot Collision Avoidance under Uncertainty with Probabilistic Safety Barrier Certificates »
Tue Dec 8th 03:00 -- 03:10 PM Room Orals & Spotlights: Social/Privacy
More from the Same Authors
-
2020 Poster: Do Adversarially Robust ImageNet Models Transfer Better? »
Hadi Salman · Andrew Ilyas · Logan Engstrom · Ashish Kapoor · Aleksander Madry -
2020 Oral: Do Adversarially Robust ImageNet Models Transfer Better? »
Hadi Salman · Andrew Ilyas · Logan Engstrom · Ashish Kapoor · Aleksander Madry -
2020 Poster: Denoised Smoothing: A Provable Defense for Pretrained Classifiers »
Hadi Salman · Mingjie Sun · Greg Yang · Ashish Kapoor · J. Zico Kolter -
2020 Poster: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient Learning »
Alekh Agarwal · Mikael Henaff · Sham Kakade · Wen Sun -
2020 Oral: FLAMBE: Structural Complexity and Representation Learning of Low Rank MDPs »
Alekh Agarwal · Sham Kakade · Akshay Krishnamurthy · Wen Sun -
2020 Poster: Information Theoretic Regret Bounds for Online Nonlinear Control »
Sham Kakade · Akshay Krishnamurthy · Kendall Lowrey · Motoya Ohnishi · Wen Sun -
2019 Poster: Characterizing Bias in Classifiers using Generative Models »
Daniel McDuff · Shuang Ma · Yale Song · Ashish Kapoor -
2019 Poster: Bias Correction of Learned Generative Models using Likelihood-Free Importance Weighting »
Aditya Grover · Jiaming Song · Ashish Kapoor · Kenneth Tran · Alekh Agarwal · Eric Horvitz · Stefano Ermon -
2018 Poster: Dual Policy Iteration »
Wen Sun · Geoffrey Gordon · Byron Boots · J. Bagnell -
2017 Poster: Predictive-State Decoders: Encoding the Future into Recurrent Networks »
Arun Venkatraman · Nicholas Rhinehart · Wen Sun · Lerrel Pinto · Martial Hebert · Byron Boots · Kris Kitani · J. Bagnell -
2016 Poster: Quantum Perceptron Models »
Ashish Kapoor · Nathan Wiebe · Krysta Svore -
2012 Poster: Multilabel Classification using Bayesian Compressed Sensing »
Ashish Kapoor · Raajay Viswanathan · Prateek Jain -
2009 Workshop: Analysis and Design of Algorithms for Interactive Machine Learning »
Sumit Basu · Ashish Kapoor -
2009 Poster: Breaking Boundaries Between Induction Time and Diagnosis Time Active Information Acquisition »
Ashish Kapoor · Eric Horvitz