Timezone: »
Achieving the full promise of the Thermodynamic Variational Objective (TVO), a recently proposed variational inference objective that lower-bounds the log evidence via one-dimensional Riemann integration, requires choosing a ``schedule'' of sorted discretization points. This paper introduces a bespoke Gaussian process bandit optimization method for automatically choosing these points. Our approach not only automates their one-time selection, but also dynamically adapts their positions over the course of optimization, leading to improved model learning and inference. We provide theoretical guarantees that our bandit optimization converges to the regret-minimizing choice of integration points. Empirical validation of our algorithm is provided in terms of improved learning and inference in Variational Autoencoders and sigmoid belief networks.
Author Information
Vu Nguyen (Amazon Research Adelaide)
Vaden Masrani (University of British Columbia)
Rob Brekelmans (University of Southern California)
Michael A Osborne (U Oxford)
Frank Wood (University of British Columbia)
More from the Same Authors
-
2021 : TITRATED: Learned Human Driving Behavior without Infractions via Amortized Inference »
Vasileios Lioutas · Adam Scibior · Frank Wood -
2022 : Distributionally Robust Bayesian Optimization with φ-divergences »
Hisham Husain · Vu Nguyen · Anton van den Hengel -
2022 : Physics aware inference for the cryo-EM inverse problem: anisotropic network model heterogeneity, global 3D pose and microscope defocus »
Geoffrey Woollard · Shayan Shekarforoush · Frank Wood · Marcus Brubaker · Khanh Dao Duc -
2022 Poster: Bezier Gaussian Processes for Tall and Wide Data »
Martin Jørgensen · Michael A Osborne -
2022 Poster: BayesPCN: A Continually Learnable Predictive Coding Associative Memory »
Jinsoo Yoo · Frank Wood -
2022 Poster: Log-Linear-Time Gaussian Processes Using Binary Tree Kernels »
Michael K. Cohen · Samuel Daulton · Michael A Osborne -
2022 Poster: Bayesian Optimization over Discrete and Mixed Spaces via Probabilistic Reparameterization »
Samuel Daulton · Xingchen Wan · David Eriksson · Maximilian Balandat · Michael A Osborne · Eytan Bakshy -
2022 Poster: Flexible Diffusion Modeling of Long Videos »
William Harvey · Saeid Naderiparizi · Vaden Masrani · Christian Weilbach · Frank Wood -
2022 Poster: Fast Bayesian Inference with Batch Bayesian Quadrature via Kernel Recombination »
Masaki Adachi · Satoshi Hayakawa · Martin Jørgensen · Harald Oberhauser · Michael A Osborne -
2021 Poster: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations »
Tim G. J. Rudner · Cong Lu · Michael A Osborne · Yarin Gal · Yee Teh -
2021 Poster: Adversarial Attacks on Graph Classifiers via Bayesian Optimisation »
Xingchen Wan · Henry Kenlay · Robin Ru · Arno Blaas · Michael A Osborne · Xiaowen Dong -
2020 : Contributed Talk 4: Annealed Importance Sampling with q-Paths »
Rob Brekelmans -
2020 Poster: Bayesian Optimization for Iterative Learning »
Vu Nguyen · Sebastian Schulze · Michael A Osborne -
2020 Poster: Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits »
Jack Parker-Holder · Vu Nguyen · Stephen J Roberts -
2019 : Opening Remarks »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 Workshop: Machine Learning and the Physical Sciences »
Atilim Gunes Baydin · Juan Carrasquilla · Shirley Ho · Karthik Kashinath · Michela Paganini · Savannah Thais · Anima Anandkumar · Kyle Cranmer · Roger Melko · Mr. Prabhat · Frank Wood -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: The Thermodynamic Variational Objective »
Vaden Masrani · Tuan Anh Le · Frank Wood -
2019 Poster: Efficient Probabilistic Inference in the Quest for Physics Beyond the Standard Model »
Atilim Gunes Baydin · Lei Shao · Wahid Bhimji · Lukas Heinrich · Saeid Naderiparizi · Andreas Munk · Jialin Liu · Bradley Gram-Hansen · Gilles Louppe · Lawrence Meadows · Philip Torr · Victor Lee · Kyle Cranmer · Mr. Prabhat · Frank Wood -
2019 Poster: Exact Rate-Distortion in Autoencoders via Echo Noise »
Rob Brekelmans · Daniel Moyer · Aram Galstyan · Greg Ver Steeg -
2018 Poster: Invariant Representations without Adversarial Training »
Daniel Moyer · Shuyang Gao · Rob Brekelmans · Aram Galstyan · Greg Ver Steeg -
2018 Poster: Faithful Inversion of Generative Models for Effective Amortized Inference »
Stefan Webb · Adam Golinski · Rob Zinkov · Siddharth N · Thomas Rainforth · Yee Whye Teh · Frank Wood -
2018 Poster: Bayesian Distributed Stochastic Gradient Descent »
Michael Teng · Frank Wood -
2016 Poster: Bayesian Optimization for Probabilistic Programs »
Thomas Rainforth · Tuan Anh Le · Jan-Willem van de Meent · Michael A Osborne · Frank Wood -
2015 Workshop: Probabilistic Integration »
Michael A Osborne · Philipp Hennig -
2015 Symposium: Algorithms Among Us: the Societal Impacts of Machine Learning »
Michael A Osborne · Adrian Weller · Murray Shanahan -
2015 Poster: Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees »
François-Xavier Briol · Chris Oates · Mark Girolami · Michael A Osborne -
2015 Spotlight: Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees »
François-Xavier Briol · Chris Oates · Mark Girolami · Michael A Osborne -
2014 Poster: Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature »
Tom Gunter · Michael A Osborne · Roman Garnett · Philipp Hennig · Stephen J Roberts -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2012 Workshop: Probabilistic Numerics »
Philipp Hennig · John P Cunningham · Michael A Osborne -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2011 Workshop: Bayesian optimization, experimental design and bandits: Theory and applications »
Nando de Freitas · Roman Garnett · Frank R Hutter · Michael A Osborne