Timezone: »
Conditional image generation is the task of generating diverse images using class label information. Although many conditional Generative Adversarial Networks (GAN) have shown realistic results, such methods consider pairwise relations between the embedding of an image and the embedding of the corresponding label (data-to-class relations) as the conditioning losses. In this paper, we propose ContraGAN that considers relations between multiple image embeddings in the same batch (data-to-data relations) as well as the data-to-class relations by using a conditional contrastive loss. The discriminator of ContraGAN discriminates the authenticity of given samples and minimizes a contrastive objective to learn the relations between training images. Simultaneously, the generator tries to generate realistic images that deceive the authenticity and have a low contrastive loss. The experimental results show that ContraGAN outperforms state-of-the-art-models by 7.3% and 7.7% on Tiny ImageNet and ImageNet datasets, respectively. Besides, we experimentally demonstrate that ContraGAN helps to relieve the overfitting of the discriminator. For a fair comparison, we re-implement twelve state-of-the-art GANs using the PyTorch library. The software package is available at https://github.com/POSTECH-CVLab/PyTorch-StudioGAN.
Author Information
Minguk Kang (POSTECH)
Jaesik Park (POSTECH)
More from the Same Authors
-
2020 : Combinatorial 3D Shape Generation via Sequential Assembly »
Jungtaek Kim · Hyunsoo Chung · Jinhwi Lee · Minsu Cho · Jaesik Park -
2022 : Substructure-Atom Cross Attention for Molecular Representation Learning »
Jiye Kim · Seungbeom Lee · Dongwoo Kim · Sungsoo Ahn · Jaesik Park -
2022 : SeLCA: Self-Supervised Learning of Canonical Axis »
Seungwook Kim · Yoonwoo Jeong · Chunghyun Park · Jaesik Park · Minsu Cho -
2022 Poster: Learning Debiased Classifier with Biased Committee »
Nayeong Kim · SEHYUN HWANG · Sungsoo Ahn · Jaesik Park · Suha Kwak -
2022 Poster: PeRFception: Perception using Radiance Fields »
Yoonwoo Jeong · Seungjoo Shin · Junha Lee · Chris Choy · Anima Anandkumar · Minsu Cho · Jaesik Park -
2022 Poster: A Rotated Hyperbolic Wrapped Normal Distribution for Hierarchical Representation Learning »
Seunghyuk Cho · Juyong Lee · Jaesik Park · Dongwoo Kim -
2021 Poster: Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning »
Hyunsoo Chung · Jungtaek Kim · Boris Knyazev · Jinhwi Lee · Graham Taylor · Jaesik Park · Minsu Cho -
2021 Poster: Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training »
Minguk Kang · Woohyeon Shim · Minsu Cho · Jaesik Park