Timezone: »

Regularizing Towards Permutation Invariance In Recurrent Models
Edo Cohen-Karlik · Avichai Ben David · Amir Globerson

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #806

In many machine learning problems the output should not depend on the order of the inputs. Such ``permutation invariant'' functions have been studied extensively recently. Here we argue that temporal architectures such as RNNs are highly relevant for such problems, despite the inherent dependence of RNNs on order. We show that RNNs can be regularized towards permutation invariance, and that this can result in compact models, as compared to non-recursive architectures. Existing solutions (e.g., DeepSets) mostly suggest restricting the learning problem to hypothesis classes which are permutation invariant by design. Our approach of enforcing permutation invariance via regularization gives rise to learning functions which are "semi permutation invariant", e.g. invariant to some permutations and not to others. Our approach relies on a novel form of stochastic regularization. We demonstrate that our method is beneficial compared to existing permutation invariant methods on synthetic and real world datasets.

Author Information

Edo Cohen-Karlik (Tel Aviv University)
Avichai Ben David (Tel Aviv University)
Amir Globerson (Tel Aviv University, Google)

Amir Globerson is senior lecturer at the School of Engineering and Computer Science at the Hebrew University. He received a PhD in computational neuroscience from the Hebrew University, and was a Rothschild postdoctoral fellow at MIT. He joined the Hebrew University in 2008. His research interests include graphical models and probabilistic inference, convex optimization, robust learning and natural language processing.

More from the Same Authors