Timezone: »
Neural datasets often contain measurements of neural activity across multiple trials of a repeated stimulus or behavior. An important problem in the analysis of such datasets is to characterize systematic aspects of neural activity that carry information about the repeated stimulus or behavior of interest, which can be considered signal'', and to separate them from the trial-to-trial fluctuations in activity that are not time-locked to the stimulus, which for purposes of such analyses can be considered
noise''. Gaussian Process factor models provide a powerful tool for identifying shared structure in high-dimensional neural data. However, they have not yet been adapted to the problem of characterizing signal and noise in multi-trial datasets. Here we address this shortcoming by proposing ``signal-noise'' Poisson-spiking Gaussian Process Factor Analysis (SNP-GPFA), a flexible latent variable model that resolves signal and noise latent structure in neural population spiking activity. To learn the parameters of our model, we introduce a Fourier-domain black box variational inference method that quickly identifies smooth latent structure. The resulting model reliably uncovers latent signal and trial-to-trial noise-related fluctuations in large-scale recordings. We use this model to show that in monkey V1, noise fluctuations perturb neural activity within a subspace orthogonal to signal activity, suggesting that trial-by-trial noise does not interfere with signal representations. Finally, we extend the model to capture statistical dependencies across brain regions in multi-region data. We show that in mouse visual cortex, models with shared noise across brain regions out-perform models with independent per-region noise.
Author Information
Stephen Keeley (Princeton University)
Mikio Aoi (Princeton University)
Yiyi Yu (UNC)
Spencer Smith (UC Santa Barbara)

Spencer LaVere Smith earned his BS in physics and mathematics (U Iowa), his Ph.D in neuroscience and neuroengineering (UCLA), and did postdoctoral work on multiphoton imaging and in vivo dendritic electrophysiology (Univ. College. London). Half of his lab builds technology for measuring and manipulating neural activity. The other half of the lab uses the technology to perform experiments and gain mechanistic insights into neural circuitry. The lab (slslab.org, labrigger.com) has developed novel multiphoton imaging instrumentation to measure neuronal activity with subcellular resolution across multiple brain areas simultaneously. His awards include a PECASE (2019) and a McKnight Technological Innovation Award (2015).
Jonathan Pillow (Princeton University)
More from the Same Authors
-
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 : Non-exchangeability in Infinite Switching Linear Dynamical Systems »
Victor Geadah · Jonathan Pillow -
2022 Poster: Dynamic Inverse Reinforcement Learning for Characterizing Animal Behavior »
Zoe Ashwood · Aditi Jha · Jonathan Pillow -
2022 Poster: Extracting computational mechanisms from neural data using low-rank RNNs »
Adrian Valente · Jonathan Pillow · Srdjan Ostojic -
2020 Poster: High-contrast “gaudy” images improve the training of deep neural network models of visual cortex »
Benjamin Cowley · Jonathan Pillow -
2020 Poster: Inferring learning rules from animal decision-making »
Zoe Ashwood · Nicholas Roy · Ji Hyun Bak · Jonathan Pillow -
2018 Poster: Scaling the Poisson GLM to massive neural datasets through polynomial approximations »
David Zoltowski · Jonathan Pillow -
2018 Poster: Efficient inference for time-varying behavior during learning »
Nicholas Roy · Ji Hyun Bak · Athena Akrami · Carlos Brody · Jonathan Pillow -
2018 Poster: Model-based targeted dimensionality reduction for neuronal population data »
Mikio Aoi · Jonathan Pillow -
2018 Poster: Power-law efficient neural codes provide general link between perceptual bias and discriminability »
Michael J Morais · Jonathan Pillow -
2018 Poster: Learning a latent manifold of odor representations from neural responses in piriform cortex »
Anqi Wu · Stan Pashkovski · Sandeep Datta · Jonathan Pillow -
2017 Poster: Gaussian process based nonlinear latent structure discovery in multivariate spike train data »
Anqi Wu · Nicholas Roy · Stephen Keeley · Jonathan Pillow -
2016 Poster: Bayesian latent structure discovery from multi-neuron recordings »
Scott Linderman · Ryan Adams · Jonathan Pillow -
2016 Poster: Adaptive optimal training of animal behavior »
Ji Hyun Bak · Jung Choi · Ilana Witten · Athena Akrami · Jonathan Pillow -
2016 Poster: A Bayesian method for reducing bias in neural representational similarity analysis »
Mingbo Cai · Nicolas W Schuck · Jonathan Pillow · Yael Niv -
2015 Poster: Convolutional spike-triggered covariance analysis for neural subunit models »
Anqi Wu · Il Memming Park · Jonathan Pillow