Timezone: »
Poster
Hardness of Learning Neural Networks with Natural Weights
Amit Daniely · Gal Vardi
Neural networks are nowadays highly successful despite strong hardness results. The existing hardness results focus on the network architecture, and assume that the network's weights are arbitrary.
A natural approach to settle the discrepancy is to assume that the network's weights are ``well-behaved" and posses some generic properties that may allow efficient learning. This approach is supported by the intuition that the weights in real-world networks are not arbitrary, but exhibit some ''random-like" properties with respect to some ''natural" distributions.
We prove negative results in this regard, and show that for depth-$2$ networks, and many ``natural" weights distributions such as the normal and the uniform distribution, most networks are hard to learn. Namely, there is no efficient learning algorithm that is provably successful for most weights, and every input distribution. It implies that there is no generic property that holds with high probability in such random networks and allows efficient learning.
Author Information
Amit Daniely (Hebrew University and Google Research)
Gal Vardi (Weizmann Institute of Science)
More from the Same Authors
-
2022 : On Convexity and Linear Mode Connectivity in Neural Networks »
David Yunis · Kumar Kshitij Patel · Pedro Savarese · Gal Vardi · Jonathan Frankle · Matthew Walter · Karen Livescu · Michael Maire -
2022 Panel: Panel 1C-2: Reconstructing Training Data… & On Optimal Learning… »
Gal Vardi · Idan Mehalel -
2022 Poster: On Margin Maximization in Linear and ReLU Networks »
Gal Vardi · Ohad Shamir · Nati Srebro -
2022 Poster: The Sample Complexity of One-Hidden-Layer Neural Networks »
Gal Vardi · Ohad Shamir · Nati Srebro -
2022 Poster: On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias »
Itay Safran · Gal Vardi · Jason Lee -
2022 Poster: Reconstructing Training Data From Trained Neural Networks »
Niv Haim · Gal Vardi · Gilad Yehudai · Ohad Shamir · Michal Irani -
2022 Poster: Gradient Methods Provably Converge to Non-Robust Networks »
Gal Vardi · Gilad Yehudai · Ohad Shamir -
2021 Poster: Learning a Single Neuron with Bias Using Gradient Descent »
Gal Vardi · Gilad Yehudai · Ohad Shamir -
2020 Poster: Neural Networks Learning and Memorization with (almost) no Over-Parameterization »
Amit Daniely -
2020 Poster: Most ReLU Networks Suffer from $\ell^2$ Adversarial Perturbations »
Amit Daniely · Hadas Shacham -
2020 Poster: Neural Networks with Small Weights and Depth-Separation Barriers »
Gal Vardi · Ohad Shamir -
2020 Spotlight: Most ReLU Networks Suffer from $\ell^2$ Adversarial Perturbations »
Amit Daniely · Hadas Shacham -
2020 Poster: Learning Parities with Neural Networks »
Amit Daniely · Eran Malach -
2020 Oral: Learning Parities with Neural Networks »
Amit Daniely · Eran Malach -
2019 Poster: Locally Private Learning without Interaction Requires Separation »
Amit Daniely · Vitaly Feldman -
2019 Poster: Generalization Bounds for Neural Networks via Approximate Description Length »
Amit Daniely · Elad Granot -
2019 Spotlight: Generalization Bounds for Neural Networks via Approximate Description Length »
Amit Daniely · Elad Granot -
2017 Poster: SGD Learns the Conjugate Kernel Class of the Network »
Amit Daniely -
2016 Poster: Toward Deeper Understanding of Neural Networks: The Power of Initialization and a Dual View on Expressivity »
Amit Daniely · Roy Frostig · Yoram Singer -
2013 Poster: More data speeds up training time in learning halfspaces over sparse vectors »
Amit Daniely · Nati Linial · Shai Shalev-Shwartz -
2013 Spotlight: More data speeds up training time in learning halfspaces over sparse vectors »
Amit Daniely · Nati Linial · Shai Shalev-Shwartz -
2012 Poster: Multiclass Learning Approaches: A Theoretical Comparison with Implications »
Amit Daniely · Sivan Sabato · Shai Shalev-Shwartz -
2012 Spotlight: Multiclass Learning Approaches: A Theoretical Comparison with Implications »
Amit Daniely · Sivan Sabato · Shai Shalev-Shwartz