Timezone: »

 
Poster
Linear Time Sinkhorn Divergences using Positive Features
Meyer Scetbon · Marco Cuturi

Wed Dec 09 09:00 AM -- 11:00 AM (PST) @ Poster Session 3 #890
Although Sinkhorn divergences are now routinely used in data sciences to compare probability distributions, the computational effort required to compute them remains expensive, growing in general quadratically in the size $n$ of the support of these distributions. Indeed, solving optimal transport (OT) with an entropic regularization requires computing a $n\times n$ kernel matrix (the neg-exponential of a $n\times n$ pairwise ground cost matrix) that is repeatedly applied to a vector. We propose to use instead ground costs of the form $c(x,y)=-\log\dotp{\varphi(x)}{\varphi(y)}$ where $\varphi$ is a map from the ground space onto the positive orthant $\RR^r_+$, with $r\ll n$. This choice yields, equivalently, a kernel $k(x,y)=\dotp{\varphi(x)}{\varphi(y)}$, and ensures that the cost of Sinkhorn iterations scales as $O(nr)$. We show that usual cost functions can be approximated using this form. Additionaly, we take advantage of the fact that our approach yields approximation that remain fully differentiable with respect to input distributions, as opposed to previously proposed adaptive low-rank approximations of the kernel matrix, to train a faster variant of OT-GAN~\cite{salimans2018improving}.

Author Information

Meyer Scetbon (CREST-ENSAE)
Marco Cuturi (Google Brain & CREST - ENSAE)

Marco Cuturi is a research scientist at Google AI, Brain team in Paris. He received his Ph.D. in 11/2005 from the Ecole des Mines de Paris in applied mathematics. Before that he graduated from National School of Statistics (ENSAE) with a master degree (MVA) from ENS Cachan. He worked as a post-doctoral researcher at the Institute of Statistical Mathematics, Tokyo, between 11/2005 and 3/2007 and then in the financial industry between 4/2007 and 9/2008. After working at the ORFE department of Princeton University as a lecturer between 2/2009 and 8/2010, he was at the Graduate School of Informatics of Kyoto University between 9/2010 and 9/2016 as a tenured associate professor. He joined ENSAE in 9/2016 as a professor, where he is now working part-time. His main employment is now with Google AI (Brain team in Paris) since 10/2018, as a research scientist working on fundamental aspects of machine learning.

More from the Same Authors