Timezone: »
Poster
Comparator-Adaptive Convex Bandits
Dirk van der Hoeven · Ashok Cutkosky · Haipeng Luo
We study bandit convex optimization methods that adapt to the norm of the comparator, a topic that has only been studied before for its full-information counterpart. Specifically, we develop convex bandit algorithms with regret bounds that are small whenever the norm of the comparator is small. We first use techniques from the full-information setting to develop comparator-adaptive algorithms for linear bandits. Then, we extend the ideas to convex bandits with Lipschitz or smooth loss functions, using a new single-point gradient estimator and carefully designed surrogate losses.
Author Information
Dirk van der Hoeven (Leiden University)
Ashok Cutkosky (Boston University)
Haipeng Luo (University of Southern California)
More from the Same Authors
-
2021 Spotlight: Online Selective Classification with Limited Feedback »
Aditya Gangrade · Anil Kag · Ashok Cutkosky · Venkatesh Saligrama -
2022 : Clairvoyant Regret Minimization: Equivalence with Nemirovski’s Conceptual Prox Method and Extension to General Convex Games »
Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo -
2023 Poster: Improved Best-of-Both-Worlds Guarantees for Multi-Armed Bandits: FTRL with General Regularizers and Multiple Optimal Arms »
Tiancheng Jin · Junyan Liu · Haipeng Luo -
2023 Poster: Mechanic: A Learning Rate Tuner »
Ashok Cutkosky · Aaron Defazio · Harsh Mehta -
2023 Poster: Regret Matching$^+$: (In)Stability and Fast Convergence in Games »
Gabriele Farina · Julien Grand-Clément · Christian Kroer · Chung-Wei Lee · Haipeng Luo -
2023 Poster: Unconstrained Dynamic Regret via Sparse Coding »
Zhiyu Zhang · Ashok Cutkosky · Yannis Paschalidis -
2023 Poster: Practical Contextual Bandits with Feedback Graphs »
Mengxiao Zhang · Yuheng Zhang · Olga Vrousgou · Haipeng Luo · Paul Mineiro -
2023 Poster: Alternation makes the adversary weaker in two-player games »
Volkan Cevher · Ashok Cutkosky · Ali Kavis · Georgios Piliouras · Stratis Skoulakis · Luca Viano -
2023 Poster: Uncoupled and Convergent Learning in Two-Player Zero-Sum Markov Games »
Yang Cai · Haipeng Luo · Chen-Yu Wei · Weiqiang Zheng -
2023 Poster: No-Regret Online Reinforcement Learning with Adversarial Losses and Transitions »
William Chang · Tiancheng Jin · Junyan Liu · Haipeng Luo · Chloé Rouyer · Chen-Yu Wei -
2022 Spotlight: Lightning Talks 4A-2 »
Barakeel Fanseu Kamhoua · Hualin Zhang · Taiki Miyagawa · Tomoya Murata · Xin Lyu · Yan Dai · Elena Grigorescu · Zhipeng Tu · Lijun Zhang · Taiji Suzuki · Wei Jiang · Haipeng Luo · Lin Zhang · Xi Wang · Young-San Lin · Huan Xiong · Liyu Chen · Bin Gu · Jinfeng Yi · Yongqiang Chen · Sandeep Silwal · Yiguang Hong · Maoyuan Song · Lei Wang · Tianbao Yang · Han Yang · MA Kaili · Samson Zhou · Deming Yuan · Bo Han · Guodong Shi · Bo Li · James Cheng -
2022 Spotlight: Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback »
Yan Dai · Haipeng Luo · Liyu Chen -
2022 Poster: Near-Optimal Goal-Oriented Reinforcement Learning in Non-Stationary Environments »
Liyu Chen · Haipeng Luo -
2022 Poster: Optimal Comparator Adaptive Online Learning with Switching Cost »
Zhiyu Zhang · Ashok Cutkosky · Yannis Paschalidis -
2022 Poster: Better SGD using Second-order Momentum »
Hoang Tran · Ashok Cutkosky -
2022 Poster: Momentum Aggregation for Private Non-convex ERM »
Hoang Tran · Ashok Cutkosky -
2022 Poster: Uncoupled Learning Dynamics with $O(\log T)$ Swap Regret in Multiplayer Games »
Ioannis Anagnostides · Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo · Tuomas Sandholm -
2022 Poster: Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2022 Poster: Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback »
Yan Dai · Haipeng Luo · Liyu Chen -
2022 Poster: Parameter-free Regret in High Probability with Heavy Tails »
Jiujia Zhang · Ashok Cutkosky -
2022 Poster: Differentially Private Online-to-batch for Smooth Losses »
Qinzi Zhang · Hoang Tran · Ashok Cutkosky -
2022 Poster: Near-Optimal No-Regret Learning Dynamics for General Convex Games »
Gabriele Farina · Ioannis Anagnostides · Haipeng Luo · Chung-Wei Lee · Christian Kroer · Tuomas Sandholm -
2021 Oral: High-probability Bounds for Non-Convex Stochastic Optimization with Heavy Tails »
Ashok Cutkosky · Harsh Mehta -
2021 Poster: The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition »
Tiancheng Jin · Longbo Huang · Haipeng Luo -
2021 Poster: High-probability Bounds for Non-Convex Stochastic Optimization with Heavy Tails »
Ashok Cutkosky · Harsh Mehta -
2021 Poster: Online Selective Classification with Limited Feedback »
Aditya Gangrade · Anil Kag · Ashok Cutkosky · Venkatesh Saligrama -
2021 Poster: Last-iterate Convergence in Extensive-Form Games »
Chung-Wei Lee · Christian Kroer · Haipeng Luo -
2021 Poster: Logarithmic Regret from Sublinear Hints »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2021 Poster: Implicit Finite-Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path »
Liyu Chen · Mehdi Jafarnia-Jahromi · Rahul Jain · Haipeng Luo -
2021 Poster: Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses »
Haipeng Luo · Chen-Yu Wei · Chung-Wei Lee -
2021 Oral: The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition »
Tiancheng Jin · Longbo Huang · Haipeng Luo -
2020 Poster: Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs »
Chung-Wei Lee · Haipeng Luo · Chen-Yu Wei · Mengxiao Zhang -
2020 Poster: Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition »
Tiancheng Jin · Haipeng Luo -
2020 Spotlight: Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition »
Tiancheng Jin · Haipeng Luo -
2020 Oral: Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs »
Chung-Wei Lee · Haipeng Luo · Chen-Yu Wei · Mengxiao Zhang -
2020 Poster: Better Full-Matrix Regret via Parameter-Free Online Learning »
Ashok Cutkosky -
2020 Poster: Online Linear Optimization with Many Hints »
Aditya Bhaskara · Ashok Cutkosky · Ravi Kumar · Manish Purohit -
2020 Poster: Exploiting the Surrogate Gap in Online Multiclass Classification »
Dirk van der Hoeven -
2019 Poster: Momentum-Based Variance Reduction in Non-Convex SGD »
Ashok Cutkosky · Francesco Orabona -
2019 Poster: Kernel Truncated Randomized Ridge Regression: Optimal Rates and Low Noise Acceleration »
Kwang-Sung Jun · Ashok Cutkosky · Francesco Orabona -
2019 Poster: Equipping Experts/Bandits with Long-term Memory »
Kai Zheng · Haipeng Luo · Ilias Diakonikolas · Liwei Wang -
2019 Poster: Model Selection for Contextual Bandits »
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo -
2019 Spotlight: Model Selection for Contextual Bandits »
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo -
2019 Poster: Hypothesis Set Stability and Generalization »
Dylan Foster · Spencer Greenberg · Satyen Kale · Haipeng Luo · Mehryar Mohri · Karthik Sridharan -
2018 Poster: Distributed Stochastic Optimization via Adaptive SGD »
Ashok Cutkosky · Róbert Busa-Fekete -
2017 Poster: Stochastic and Adversarial Online Learning without Hyperparameters »
Ashok Cutkosky · Kwabena A Boahen -
2016 Poster: Online Convex Optimization with Unconstrained Domains and Losses »
Ashok Cutkosky · Kwabena A Boahen