Timezone: »
Biological systems face dynamic environments that require continual learning. It is not well understood how these systems balance the tension between flexibility for learning and robustness for memory of previous behaviors. Continual learning without catastrophic interference also remains a challenging problem in machine learning. Here, we develop a novel learning rule designed to minimize interference between sequentially learned tasks in recurrent networks. Our learning rule preserves network dynamics within activity-defined subspaces used for previously learned tasks. It encourages dynamics associated with new tasks that might otherwise interfere to instead explore orthogonal subspaces, and it allows for reuse of previously established dynamical motifs where possible. Employing a set of tasks used in neuroscience, we demonstrate that our approach successfully eliminates catastrophic interference and offers a substantial improvement over previous continual learning algorithms. Using dynamical systems analysis, we show that networks trained using our approach can reuse similar dynamical structures across similar tasks. This possibility for shared computation allows for faster learning during sequential training. Finally, we identify organizational differences that emerge when training tasks sequentially versus simultaneously.
Author Information
Lea Duncker (Gatsby Unit, UCL)
Laura N Driscoll (Stanford)
Krishna V Shenoy (Stanford University)
Maneesh Sahani (Gatsby Unit, UCL)
David Sussillo (Stanford University)
More from the Same Authors
-
2021 Spotlight: Probabilistic Tensor Decomposition of Neural Population Spiking Activity »
Hugo Soulat · Sepiedeh Keshavarzi · Troy Margrie · Maneesh Sahani -
2021 : Neural Latents Benchmark ‘21: Evaluating latent variable models of neural population activity »
Felix Pei · Joel Ye · David Zoltowski · Anqi Wu · Raeed Chowdhury · Hansem Sohn · Joseph O'Doherty · Krishna V Shenoy · Matthew Kaufman · Mark Churchland · Mehrdad Jazayeri · Lee Miller · Jonathan Pillow · Il Memming Park · Eva Dyer · Chethan Pandarinath -
2022 Poster: Structured Recognition for Generative Models with Explaining Away »
Changmin Yu · Hugo Soulat · Neil Burgess · Maneesh Sahani -
2021 Poster: Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems »
Jimmy Smith · Scott Linderman · David Sussillo -
2021 Poster: Reverse engineering learned optimizers reveals known and novel mechanisms »
Niru Maheswaranathan · David Sussillo · Luke Metz · Ruoxi Sun · Jascha Sohl-Dickstein -
2021 Poster: Probabilistic Tensor Decomposition of Neural Population Spiking Activity »
Hugo Soulat · Sepiedeh Keshavarzi · Troy Margrie · Maneesh Sahani -
2020 Poster: Non-reversible Gaussian processes for identifying latent dynamical structure in neural data »
Virginia Rutten · Alberto Bernacchia · Maneesh Sahani · Guillaume Hennequin -
2020 Oral: Non-reversible Gaussian processes for identifying latent dynamical structure in neural data »
Virginia Rutten · Alberto Bernacchia · Maneesh Sahani · Guillaume Hennequin -
2019 Poster: A neurally plausible model for online recognition and postdiction in a dynamical environment »
Li Kevin Wenliang · Maneesh Sahani -
2019 Poster: A neurally plausible model learns successor representations in partially observable environments »
Eszter Vértes · Maneesh Sahani -
2019 Oral: A neurally plausible model learns successor representations in partially observable environments »
Eszter Vértes · Maneesh Sahani -
2019 Poster: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Oral: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2018 Poster: Flexible and accurate inference and learning for deep generative models »
Eszter Vértes · Maneesh Sahani -
2018 Poster: Temporal alignment and latent Gaussian process factor inference in population spike trains »
Lea Duncker · Maneesh Sahani -
2015 Poster: Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) »
Mijung Park · Wittawat Jitkrittum · Ahmad Qamar · Zoltan Szabo · Lars Buesing · Maneesh Sahani -
2015 Poster: High-dimensional neural spike train analysis with generalized count linear dynamical systems »
Yuanjun Gao · Lars Busing · Krishna V Shenoy · John Cunningham -
2015 Spotlight: High-dimensional neural spike train analysis with generalized count linear dynamical systems »
Yuanjun Gao · Lars Busing · Krishna V Shenoy · John Cunningham -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Extracting regions of interest from biological images with convolutional sparse block coding »
Marius Pachitariu · Adam M Packer · Noah Pettit · Henry Dalgleish · Michael Hausser · Maneesh Sahani -
2013 Poster: Recurrent linear models of simultaneously-recorded neural populations »
Marius Pachitariu · Biljana Petreska · Maneesh Sahani -
2013 Spotlight: Recurrent linear models of simultaneously-recorded neural populations »
Marius Pachitariu · Biljana Petreska · Maneesh Sahani -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Poster: Learning visual motion in recurrent neural networks »
Marius Pachitariu · Maneesh Sahani -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: A Brain-Machine Interface Operating with a Real-Time Spiking Neural Network Control Algorithm »
Julie Dethier · Paul Nuyujukian · Chris Eliasmith · Terrence C Stewart · Shauki A Elasaad · Krishna V Shenoy · Kwabena A Boahen -
2011 Poster: Dynamical segmentation of single trials from population neural data »
Biljana Petreska · Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2010 Session: The Sam Roweis Symposium »
Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2008 Poster: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity »
Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Oral: Inferring Elapsed Time from Stochastic Neural Processes »
Misha B Ahrens · Maneesh Sahani -
2007 Spotlight: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Elapsed Time from Stochastic Neural Processes »
Misha B Ahrens · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani