Timezone: »
We propose a novel framework to perform classification via deep learning in the presence of noisy annotations. When trained on noisy labels, deep neural networks have been observed to first fit the training data with clean labels during an "early learning" phase, before eventually memorizing the examples with false labels. We prove that early learning and memorization are fundamental phenomena in high-dimensional classification tasks, even in simple linear models, and give a theoretical explanation in this setting. Motivated by these findings, we develop a new technique for noisy classification tasks, which exploits the progress of the early learning phase. In contrast with existing approaches, which use the model output during early learning to detect the examples with clean labels, and either ignore or attempt to correct the false labels, we take a different route and instead capitalize on early learning via regularization. There are two key elements to our approach. First, we leverage semi-supervised learning techniques to produce target probabilities based on the model outputs. Second, we design a regularization term that steers the model towards these targets, implicitly preventing memorization of the false labels. The resulting framework is shown to provide robustness to noisy annotations on several standard benchmarks and real-world datasets, where it achieves results comparable to the state of the art.
Author Information
Sheng Liu (NYU)
Jonathan Niles-Weed (NYU)
Narges Razavian (New York University School of Medicine)
Carlos Fernandez-Granda (NYU)
More from the Same Authors
-
2021 : Sinkhorn EM: An Expectation-Maximization algorithm based on entropic optimal transport »
Gonzalo Mena · Amin Nejatbakhsh · Erdem Varol · Jonathan Niles-Weed -
2021 : Sinkhorn EM: An Expectation-Maximizationalgorithm based on entropic optimal transport »
Gonzalo Mena · Amin Nejatbakhsh · Erdem Varol · Jonathan Niles-Weed -
2021 : Entropic estimation of optimal transport maps »
Aram-Alexandre Pooladian · Jonathan Niles-Weed -
2021 : Entropic estimation of optimal transport maps »
Aram-Alexandre Pooladian · Jonathan Niles-Weed -
2022 Panel: Panel 3B-4: Learning and Covering… & Asymptotics of smoothed… »
Jonathan Niles-Weed · Konstantinos Stavropoulos -
2022 Poster: Distributional Convergence of the Sliced Wasserstein Process »
Jiaqi Xi · Jonathan Niles-Weed -
2022 Poster: Asymptotics of smoothed Wasserstein distances in the small noise regime »
Yunzi Ding · Jonathan Niles-Weed -
2022 Poster: Are All Losses Created Equal: A Neural Collapse Perspective »
Jinxin Zhou · Chong You · Xiao Li · Kangning Liu · Sheng Liu · Qing Qu · Zhihui Zhu -
2022 Poster: StrokeRehab: A Benchmark Dataset for Sub-second Action Identification »
Aakash Kaku · Kangning Liu · Avinash Parnandi · Haresh Rengaraj Rajamohan · Kannan Venkataramanan · Anita Venkatesan · Audre Wirtanen · Natasha Pandit · Heidi Schambra · Carlos Fernandez-Granda -
2021 Poster: Adaptive Denoising via GainTuning »
Sreyas Mohan · Joshua L Vincent · Ramon Manzorro · Peter Crozier · Carlos Fernandez-Granda · Eero Simoncelli -
2021 Poster: Convolutional Normalization: Improving Deep Convolutional Network Robustness and Training »
Sheng Liu · Xiao Li · Simon Zhai · Chong You · Zhihui Zhu · Carlos Fernandez-Granda · Qing Qu -
2020 Poster: The All-or-Nothing Phenomenon in Sparse Tensor PCA »
Jonathan Niles-Weed · Ilias Zadik -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Poster: Data-driven Estimation of Sinusoid Frequencies »
Gautier Izacard · Sreyas Mohan · Carlos Fernandez-Granda