Timezone: »
This paper tackles the modelling of large, complex and multivariate time series panels in a probabilistic setting. To this extent, we present a novel approach reconciling classical state space models with deep learning methods. By augmenting state space models with normalizing flows, we mitigate imprecisions stemming from idealized assumptions in state space models. The resulting model is highly flexible while still retaining many of the attractive properties of state space models, e.g., uncertainty and observation errors are properly accounted for, inference is tractable, sampling is efficient, good generalization performance is observed, even in low data regimes. We demonstrate competitiveness against state-of-the-art deep learning methods on the tasks of forecasting real world data and handling varying levels of missing data.
Author Information
Emmanuel de Bézenac (Sorbonne Université)
Syama Sundar Rangapuram (Amazon Research)
Konstantinos Benidis (Amazon Research)
Michael Bohlke-Schneider (Amazon)
Richard Kurle (Technical University of Munich)
Lorenzo Stella (Amazon Research)
Hilaf Hasson (Amazon Research)
Patrick Gallinari (Sorbonne University & Criteo AI Lab, Paris)
Tim Januschowski (Amazon Research)
- Director Pricing Platform, Zalando SE - Head of Time Series ML at AWS AI
More from the Same Authors
-
2021 : On Symmetries in Variational Bayesian Neural Nets »
Richard Kurle · Tim Januschowski · Jan Gasthaus · Bernie Wang -
2022 : Adaptive Sampling for Probabilistic Forecasting under Distribution Shift »
Luca Masserano · Syama Sundar Rangapuram · Shubham Kapoor · Rajbir Nirwan · Youngsuk Park · Michael Bohlke-Schneider -
2022 : But Are You Sure? Quantifying Uncertainty in Model Explanations »
Charles Marx · Youngsuk Park · Hilaf Hasson · Yuyang (Bernie) Wang · Stefano Ermon · Chaitanya Baru -
2022 Poster: On the detrimental effect of invariances in the likelihood for variational inference »
Richard Kurle · Ralf Herbrich · Tim Januschowski · Yuyang (Bernie) Wang · Jan Gasthaus -
2021 Poster: Neural Flows: Efficient Alternative to Neural ODEs »
Marin Biloš · Johanna Sommer · Syama Sundar Rangapuram · Tim Januschowski · Stephan Günnemann -
2021 Poster: Detecting Anomalous Event Sequences with Temporal Point Processes »
Oleksandr Shchur · Ali Caner Turkmen · Tim Januschowski · Jan Gasthaus · Stephan Günnemann -
2021 Poster: LEADS: Learning Dynamical Systems that Generalize Across Environments »
Yuan Yin · Ibrahim Ayed · Emmanuel de Bézenac · Nicolas Baskiotis · Patrick Gallinari -
2021 Poster: Probabilistic Forecasting: A Level-Set Approach »
Hilaf Hasson · Bernie Wang · Tim Januschowski · Jan Gasthaus -
2021 Poster: Online false discovery rate control for anomaly detection in time series »
Quentin Rebjock · Baris Kurt · Tim Januschowski · Laurent Callot -
2021 Poster: Deep Explicit Duration Switching Models for Time Series »
Abdul Fatir Ansari · Konstantinos Benidis · Richard Kurle · Ali Caner Turkmen · Harold Soh · Alexander Smola · Bernie Wang · Tim Januschowski -
2021 Poster: Latent Matters: Learning Deep State-Space Models »
Alexej Klushyn · Richard Kurle · Maximilian Soelch · Botond Cseke · Patrick van der Smagt -
2020 Poster: Deep Rao-Blackwellised Particle Filters for Time Series Forecasting »
Richard Kurle · Syama Sundar Rangapuram · Emmanuel de Bézenac · Stephan Günnemann · Jan Gasthaus -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 Poster: High-dimensional multivariate forecasting with low-rank Gaussian Copula Processes »
David Salinas · Michael Bohlke-Schneider · Laurent Callot · Roberto Medico · Jan Gasthaus -
2019 Poster: Learning Hierarchical Priors in VAEs »
Alexej Klushyn · Nutan Chen · Richard Kurle · Botond Cseke · Patrick van der Smagt -
2019 Spotlight: Learning Hierarchical Priors in VAEs »
Alexej Klushyn · Nutan Chen · Richard Kurle · Botond Cseke · Patrick van der Smagt -
2018 Poster: Deep State Space Models for Time Series Forecasting »
Syama Sundar Rangapuram · Matthias W Seeger · Jan Gasthaus · Lorenzo Stella · Bernie Wang · Tim Januschowski -
2013 Poster: Robust Bloom Filters for Large MultiLabel Classification Tasks »
Moustapha M Cisse · Nicolas Usunier · Thierry Artières · Patrick Gallinari -
2012 Poster: On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking »
Clément Calauzènes · Nicolas Usunier · Patrick Gallinari -
2012 Oral: On the (Non-)existence of Convex, Calibrated Surrogate Losses for Ranking »
Clément Calauzènes · Nicolas Usunier · Patrick Gallinari