Timezone: »
Many real-world problems, including multi-speaker text-to-speech synthesis, can greatly benefit from the ability to meta-learn large models with only a few task- specific components. Updating only these task-specific modules then allows the model to be adapted to low-data tasks for as many steps as necessary without risking overfitting. Unfortunately, existing meta-learning methods either do not scale to long adaptation or else rely on handcrafted task-specific architectures. Here, we propose a meta-learning approach that obviates the need for this often sub-optimal hand-selection. In particular, we develop general techniques based on Bayesian shrinkage to automatically discover and learn both task-specific and general reusable modules. Empirically, we demonstrate that our method discovers a small set of meaningful task-specific modules and outperforms existing meta- learning approaches in domains like few-shot text-to-speech that have little task data and long adaptation horizons. We also show that existing meta-learning methods including MAML, iMAML, and Reptile emerge as special cases of our method.
Author Information
Yutian Chen (DeepMind)
Abram Friesen (DeepMind)
Feryal Behbahani (DeepMind)
Arnaud Doucet (Google DeepMind)
David Budden (DeepMind)
Matthew Hoffman (DeepMind)
Nando de Freitas (DeepMind)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Modular Meta-Learning with Shrinkage »
Thu. Dec 10th 05:00 -- 07:00 AM Room Poster Session 4 #1207
More from the Same Authors
-
2021 Spotlight: Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling »
Valentin De Bortoli · James Thornton · Jeremy Heng · Arnaud Doucet -
2021 : Introducing Symmetries to Black Box Meta Reinforcement Learning »
Louis Kirsch · Sebastian Flennerhag · Hado van Hasselt · Abram Friesen · Junhyuk Oh · Yutian Chen -
2021 : Introducing Symmetries to Black Box Meta Reinforcement Learning »
Louis Kirsch · Sebastian Flennerhag · Hado van Hasselt · Abram Friesen · Junhyuk Oh · Yutian Chen -
2022 : Multi-step Planning for Automated Hyperparameter Optimization with OptFormer »
Lucio M Dery · Abram Friesen · Nando de Freitas · Marc'Aurelio Ranzato · Yutian Chen -
2023 Poster: Structured State Space Models for In-Context Reinforcement Learning »
Chris Lu · Yannick Schroecker · Albert Gu · Emilio Parisotto · Jakob Foerster · Satinder Singh · Feryal Behbahani -
2022 Poster: Towards Learning Universal Hyperparameter Optimizers with Transformers »
Yutian Chen · Xingyou Song · Chansoo Lee · Zi Wang · Richard Zhang · David Dohan · Kazuya Kawakami · Greg Kochanski · Arnaud Doucet · Marc'Aurelio Ranzato · Sagi Perel · Nando de Freitas -
2021 : Retrospective Panel »
Sergey Levine · Nando de Freitas · Emma Brunskill · Finale Doshi-Velez · Nan Jiang · Rishabh Agarwal -
2021 Test Of Time: Online Learning for Latent Dirichlet Allocation »
Matthew Hoffman · Francis Bach · David Blei -
2021 Poster: Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling »
Valentin De Bortoli · James Thornton · Jeremy Heng · Arnaud Doucet -
2021 Poster: NEO: Non Equilibrium Sampling on the Orbits of a Deterministic Transform »
Achille Thin · Yazid Janati El Idrissi · Sylvain Le Corff · Charles Ollion · Eric Moulines · Arnaud Doucet · Alain Durmus · Christian X Robert -
2021 Poster: Online Variational Filtering and Parameter Learning »
Andrew Campbell · Yuyang Shi · Thomas Rainforth · Arnaud Doucet -
2021 Poster: Active Offline Policy Selection »
Ksenia Konyushova · Yutian Chen · Thomas Paine · Caglar Gulcehre · Cosmin Paduraru · Daniel Mankowitz · Misha Denil · Nando de Freitas -
2021 Oral: Online Variational Filtering and Parameter Learning »
Andrew Campbell · Yuyang Shi · Thomas Rainforth · Arnaud Doucet -
2020 : Closing remarks »
Raymond Chua · Feryal Behbahani · Julie J Lee · Rui Ponte Costa · Doina Precup · Blake Richards · Ida Momennejad -
2020 : Invited Talk #7 QnA - Yael Niv »
Yael Niv · Doina Precup · Raymond Chua · Feryal Behbahani -
2020 : Speaker Introduction: Yael Niv »
Doina Precup · Raymond Chua · Feryal Behbahani -
2020 : Speaker Introduction: Contributed talk#3 speaker »
Feryal Behbahani · Raymond Chua -
2020 : Invited Talk #6 QnA - Catherine Hartley »
Catherine Hartley · Julie J Lee · Raymond Chua · Feryal Behbahani -
2020 : Speaker Introduction: Catherine Hartley »
Julie J Lee · Raymond Chua · Feryal Behbahani -
2020 : Invited Talk #5 QnA - Ishita Dasgupta »
Ishita Dasgupta · Julie J Lee · Feryal Behbahani · Raymond Chua -
2020 : Speaker Introduction: Ishita Dasgupta »
Julie J Lee · Raymond Chua · Feryal Behbahani -
2020 : Panel »
Emma Brunskill · Nan Jiang · Nando de Freitas · Finale Doshi-Velez · Sergey Levine · John Langford · Lihong Li · George Tucker · Rishabh Agarwal · Aviral Kumar -
2020 : Offline RL »
Nando de Freitas -
2020 : Invited Talk #4 QnA - George Konidaris »
George Konidaris · Raymond Chua · Feryal Behbahani -
2020 : Speaker Introduction: George Konidaris »
Raymond Chua · Feryal Behbahani -
2020 : Invited Talk #3 QnA - Kim Stachenfeld »
Kimberly Stachenfeld · Ida Momennejad · Feryal Behbahani · Raymond Chua -
2020 : Speaker Introduction: Kim Stachenfeld »
Ida Momennejad · Raymond Chua · Feryal Behbahani -
2020 : Speaker Introduction: Contributed talk#2 »
Raymond Chua · Feryal Behbahani · Sara Zannone -
2020 : Speaker Introduction: Contributed talk#1 »
Raymond Chua · Feryal Behbahani -
2020 : Invited Talk #2 QnA - Claudia Clopath (Live, no recording) »
Claudia Clopath · Rui Ponte Costa · Raymond Chua · Feryal Behbahani -
2020 : Speaker Introduction: Claudia Clopath »
Raymond Chua · Feryal Behbahani · Rui Ponte Costa -
2020 : Invited talk 1 QnA: Shakir Mohamed »
Shakir Mohamed · Feryal Behbahani · Raymond Chua -
2020 : Speaker Introduction: Shakir Mohamed »
Feryal Behbahani · Raymond Chua -
2020 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Feryal Behbahani · Julie J Lee · Sara Zannone · Rui Ponte Costa · Blake Richards · Ida Momennejad · Doina Precup -
2020 : Organizers Opening Remarks »
Raymond Chua · Feryal Behbahani · Julie J Lee · Ida Momennejad · Rui Ponte Costa · Blake Richards · Doina Precup -
2020 Poster: Critic Regularized Regression »
Ziyu Wang · Alexander Novikov · Konrad Zolna · Josh Merel · Jost Tobias Springenberg · Scott Reed · Bobak Shahriari · Noah Siegel · Caglar Gulcehre · Nicolas Heess · Nando de Freitas -
2020 Poster: A Combinatorial Perspective on Transfer Learning »
Jianan Wang · Eren Sezener · David Budden · Marcus Hutter · Joel Veness -
2020 Poster: RL Unplugged: A Suite of Benchmarks for Offline Reinforcement Learning »
Caglar Gulcehre · Ziyu Wang · Alexander Novikov · Thomas Paine · Sergio Gómez · Konrad Zolna · Rishabh Agarwal · Josh Merel · Daniel Mankowitz · Cosmin Paduraru · Gabriel Dulac-Arnold · Jerry Li · Mohammad Norouzi · Matthew Hoffman · Nicolas Heess · Nando de Freitas -
2020 : Women at DeepMind: Applying for technical roles »
Feryal Behbahani · Mihaela Rosca · Kate Parkyn -
2020 Poster: Online Learning in Contextual Bandits using Gated Linear Networks »
Eren Sezener · Marcus Hutter · David Budden · Jianan Wang · Joel Veness -
2020 Poster: Gaussian Gated Linear Networks »
David Budden · Adam Marblestone · Eren Sezener · Tor Lattimore · Gregory Wayne · Joel Veness -
2019 Workshop: Science meets Engineering of Deep Learning »
Levent Sagun · Caglar Gulcehre · Adriana Romero Soriano · Negar Rostamzadeh · Nando de Freitas -
2019 : Welcoming remarks and introduction »
Levent Sagun · Caglar Gulcehre · Adriana Romero Soriano · Negar Rostamzadeh · Nando de Freitas -
2019 : Coffee/Poster session 1 »
Shiro Takagi · Khurram Javed · Johanna Sommer · Amr Sharaf · Pierluca D'Oro · Ying Wei · Sivan Doveh · Colin White · Santiago Gonzalez · Cuong Nguyen · Mao Li · Tianhe Yu · Tiago Ramalho · Masahiro Nomura · Ahsan Alvi · Jean-Francois Ton · W. Ronny Huang · Jessica Lee · Sebastian Flennerhag · Michael Zhang · Abram Friesen · Paul Blomstedt · Alina Dubatovka · Sergey Bartunov · Subin Yi · Iaroslav Shcherbatyi · Christian Simon · Zeyuan Shang · David MacLeod · Lu Liu · Liam Fowl · Diego Mesquita · Deirdre Quillen -
2019 : Opening Remarks »
Raymond Chua · Feryal Behbahani · Sara Zannone · Rui Ponte Costa · Claudia Clopath · Doina Precup · Blake Richards -
2019 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Sara Zannone · Feryal Behbahani · Rui Ponte Costa · Claudia Clopath · Blake Richards · Doina Precup -
2019 Poster: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2019 Spotlight: Learning Compositional Neural Programs with Recursive Tree Search and Planning »
Thomas PIERROT · Guillaume Ligner · Scott Reed · Olivier Sigaud · Nicolas Perrin · Alexandre Laterre · David Kas · Karim Beguir · Nando de Freitas -
2018 : TBA 5 »
Nando de Freitas -
2018 : Invited Talk 5: Nando de Freitas »
Nando de Freitas -
2018 Poster: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2018 Spotlight: Playing hard exploration games by watching YouTube »
Yusuf Aytar · Tobias Pfaff · David Budden · Thomas Paine · Ziyu Wang · Nando de Freitas -
2017 : Invited talk: Learning to learn without gradient descent by gradient descent. »
Yutian Chen -
2017 Poster: Robust Imitation of Diverse Behaviors »
Ziyu Wang · Josh Merel · Scott Reed · Nando de Freitas · Gregory Wayne · Nicolas Heess -
2017 Tutorial: Deep Learning: Practice and Trends »
Nando de Freitas · Scott Reed · Oriol Vinyals -
2016 Workshop: Neural Abstract Machines & Program Induction »
Matko Bošnjak · Nando de Freitas · Tejas Kulkarni · Arvind Neelakantan · Scott E Reed · Sebastian Riedel · Tim Rocktäschel -
2016 : Nando De Freitas »
Nando de Freitas -
2016 : Learning To Optimize »
Nando de Freitas -
2016 Poster: Learning to learn by gradient descent by gradient descent »
Marcin Andrychowicz · Misha Denil · Sergio Gómez · Matthew Hoffman · David Pfau · Tom Schaul · Nando de Freitas -
2015 : Information based methods for Black-box Optimization »
Matthew Hoffman -
2015 Workshop: Bayesian Optimization: Scalability and Flexibility »
Bobak Shahriari · Ryan Adams · Nando de Freitas · Amar Shah · Roberto Calandra -
2014 Workshop: Bayesian Optimization in Academia and Industry »
Zoubin Ghahramani · Ryan Adams · Matthew Hoffman · Kevin Swersky · Jasper Snoek -
2014 Poster: Predictive Entropy Search for Efficient Global Optimization of Black-box Functions »
José Miguel Hernández-Lobato · Matthew Hoffman · Zoubin Ghahramani -
2014 Spotlight: Predictive Entropy Search for Efficient Global Optimization of Black-box Functions »
José Miguel Hernández-Lobato · Matthew Hoffman · Zoubin Ghahramani -
2013 Workshop: Bayesian Optimization in Theory and Practice »
Matthew Hoffman · Jasper Snoek · Nando de Freitas · Michael A Osborne · Ryan Adams · Sebastien Bubeck · Philipp Hennig · Remi Munos · Andreas Krause -
2007 Spotlight: Bayesian Policy Learning with Trans-Dimensional MCMC »
Matthew Hoffman · Arnaud Doucet · Nando de Freitas · Ajay Jasra -
2007 Poster: Bayesian Policy Learning with Trans-Dimensional MCMC »
Matthew Hoffman · Arnaud Doucet · Nando de Freitas · Ajay Jasra