Timezone: »

 
Poster
Convolutional Tensor-Train LSTM for Spatio-Temporal Learning
Jiahao Su · Wonmin Byeon · Jean Kossaifi · Furong Huang · Jan Kautz · Anima Anandkumar

Tue Dec 08 09:00 AM -- 11:00 AM (PST) @ Poster Session 1 #187

Learning from spatio-temporal data has numerous applications such as human-behavior analysis, object tracking, video compression, and physics simulation. However, existing methods still perform poorly on challenging video tasks such as long-term forecasting. This is because these kinds of challenging tasks require learning long-term spatio-temporal correlations in the video sequence. In this paper, we propose a higher-order convolutional LSTM model that can efficiently learn these correlations, along with a succinct representations of the history. This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time. To make this feasible in terms of computation and memory requirements, we propose a novel convolutional tensor-train decomposition of the higher-order model. This decomposition reduces the model complexity by jointly approximating a sequence of convolutional kernels as a low-rank tensor-train factorization. As a result, our model outperforms existing approaches, but uses only a fraction of parameters, including the baseline models. Our results achieve state-of-the-art performance in a wide range of applications and datasets, including the multi-steps video prediction on the Moving-MNIST-2 and KTH action datasets as well as early activity recognition on the Something-Something V2 dataset.

Author Information

Jiahao Su (University of Maryland)
Wonmin Byeon (NVIDIA Research)
Jean Kossaifi (NVIDIA Research)
Furong Huang (University of Maryland)

Furong Huang is an assistant professor of computer science. Huang’s research focuses on machine learning, high-dimensional statistics and distributed algorithms—both the theoretical analysis and practical implementation of parallel spectral methods for latent variable graphical models. Some applications of her research include developing fast detection algorithms to discover hidden and overlapping user communities in social networks, learning convolutional sparse coding models for understanding semantic meanings of sentences and object recognition in images, healthcare analytics by learning a hierarchy on human diseases for guiding doctors to identify potential diseases afflicting patients, and more. Huang recently completed a postdoctoral position at Microsoft Research in New York.

Jan Kautz (NVIDIA)
Anima Anandkumar (NVIDIA / Caltech)

Anima Anandkumar is a Bren professor at Caltech CMS department and a director of machine learning research at NVIDIA. Her research spans both theoretical and practical aspects of large-scale machine learning. In particular, she has spearheaded research in tensor-algebraic methods, non-convex optimization, probabilistic models and deep learning. Anima is the recipient of several awards and honors such as the Bren named chair professorship at Caltech, Alfred. P. Sloan Fellowship, Young investigator awards from the Air Force and Army research offices, Faculty fellowships from Microsoft, Google and Adobe, and several best paper awards. Anima received her B.Tech in Electrical Engineering from IIT Madras in 2004 and her PhD from Cornell University in 2009. She was a postdoctoral researcher at MIT from 2009 to 2010, a visiting researcher at Microsoft Research New England in 2012 and 2014, an assistant professor at U.C. Irvine between 2010 and 2016, an associate professor at U.C. Irvine between 2016 and 2017 and a principal scientist at Amazon Web Services between 2016 and 2018.

More from the Same Authors