Timezone: »
Recent advances in Generative Adversarial Networks (GANs) have led to their widespread adoption for the purposes of generating high quality synthetic imagery. While capable of generating photo-realistic images, these models often produce unrealistic samples which fall outside of the data manifold. Several recently proposed techniques attempt to avoid spurious samples, either by rejecting them after generation, or by truncating the model's latent space. While effective, these methods are inefficient, as a large fraction of training time and model capacity are dedicated towards samples that will ultimately go unused. In this work we propose a novel approach to improve sample quality: altering the training dataset via instance selection before model training has taken place. By refining the empirical data distribution before training, we redirect model capacity towards high-density regions, which ultimately improves sample fidelity, lowers model capacity requirements, and significantly reduces training time. Code is available at https://github.com/uoguelph-mlrg/instanceselectionfor_gans.
Author Information
Terrance DeVries (University of Guelph)
Michal Drozdzal (FAIR)
Graham Taylor (University of Guelph)
More from the Same Authors
-
2020 Poster: 3D Shape Reconstruction from Vision and Touch »
Edward Smith · Roberto Calandra · Adriana Romero · Georgia Gkioxari · David Meger · Jitendra Malik · Michal Drozdzal -
2020 Session: Orals & Spotlights Track 08: Deep Learning »
Graham Taylor · Mario Lucic -
2019 Poster: Understanding Attention and Generalization in Graph Neural Networks »
Boris Knyazev · Graham Taylor · Mohamed Amer -
2011 Workshop: Big Learning: Algorithms, Systems, and Tools for Learning at Scale »
Joseph E Gonzalez · Sameer Singh · Graham Taylor · James Bergstra · Alice Zheng · Misha Bilenko · Yucheng Low · Yoshua Bengio · Michael Franklin · Carlos Guestrin · Andrew McCallum · Alexander Smola · Michael Jordan · Sugato Basu -
2011 Poster: Facial Expression Transfer with Input-Output Temporal Restricted Boltzmann Machines »
Matthew D Zeiler · Graham Taylor · Leonid Sigal · Iain Matthews · Rob Fergus -
2010 Poster: Pose-Sensitive Embedding by Nonlinear NCA Regression »
Graham Taylor · Rob Fergus · George Williams · Ian Spiro · Christoph Bregler -
2008 Poster: The Recurrent Temporal Restricted Boltzmann Machine »
Ilya Sutskever · Geoffrey E Hinton · Graham Taylor -
2006 Poster: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis -
2006 Spotlight: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis