Timezone: »
Weighted model integration (WMI) is a framework to perform advanced probabilistic inference on hybrid domains, i.e., on distributions over mixed continuous-discrete random variables and in presence of complex logical and arithmetic constraints. In this work, we advance the WMI framework on both the theoretical and algorithmic side. First, we exactly trace the boundaries of tractability for WMI inference by proving that to be amenable to exact and efficient inference a WMI problem has to posses a tree-shaped structure with logarithmic diameter. While this result deepens our theoretical understanding of WMI it hinders the practical applicability of exact WMI solvers to real-world problems. To overcome this, we propose the first approximate WMI solver that does not resort to sampling, but performs exact inference on one approximate models. Our solution performs message passing in a relaxed problem structure iteratively to recover certain lost dependencies and, as our experiments suggest, is competitive with other SOTA WMI solvers.
Author Information
Zhe Zeng (University of California, Los Angeles)
Paolo Morettin (University of Trento)
Fanqi Yan (University of California, Los Angeles)
B.S. - Zhejiang University M.S. - University of Chinese Academy of Sciences Visiting Student - University of California, Los Angeles Visiting Student - University Pierre and Marie Curie Exchange Student - University of New South Wales
Antonio Vergari (University of California, Los Angeles)
Guy Van den Broeck (UCLA)
I am an Assistant Professor and Samueli Fellow at UCLA, in the Computer Science Department, where I direct the Statistical and Relational Artificial Intelligence (StarAI) lab. My research interests are in Machine Learning (Statistical Relational Learning, Tractable Learning), Knowledge Representation and Reasoning (Graphical Models, Lifted Probabilistic Inference, Knowledge Compilation), Applications of Probabilistic Reasoning and Learning (Probabilistic Programming, Probabilistic Databases), and Artificial Intelligence in general.
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Poster: Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations »
Thu. Dec 10th 05:00 -- 07:00 PM Room Poster Session 5 #1518
More from the Same Authors
-
2021 Spotlight: Tractable Regularization of Probabilistic Circuits »
Anji Liu · Guy Van den Broeck -
2022 : Panel Discussion: "Heading for a Unifying View on nCSI" »
Tobias Gerstenberg · Sriraam Natarajan · - Mausam · Guy Van den Broeck · Devendra Dhami -
2022 : AI can learn from data. But can it learn to reason? »
Guy Van den Broeck -
2022 : Panel »
Guy Van den Broeck · Cassio de Campos · Denis Maua · Kristian Kersting · Rianne van den Berg -
2022 Poster: Semantic Probabilistic Layers for Neuro-Symbolic Learning »
Kareem Ahmed · Stefano Teso · Kai-Wei Chang · Guy Van den Broeck · Antonio Vergari -
2022 Poster: Sparse Probabilistic Circuits via Pruning and Growing »
Meihua Dang · Anji Liu · Guy Van den Broeck -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 : AI workloads inside databases »
Guy Van den Broeck · Alexander Ratner · Benjamin Moseley · Konstantinos Karanasos · Parisa Kordjamshidi · Molham Aref · Arun Kumar -
2021 Poster: A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference »
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck -
2021 : PYLON: A PyTorch Framework for Learning with Constraints »
Kareem Ahmed · Tao Li · Nu Mai Thy Ton · Quan Guo · Kai-Wei Chang · Parisa Kordjamshidi · Vivek Srikumar · Guy Van den Broeck · Sameer Singh -
2021 Oral: A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference »
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck -
2021 Poster: Tractable Regularization of Probabilistic Circuits »
Anji Liu · Guy Van den Broeck -
2020 : Contributed talks 6: Group Fairness by Probabilistic Modeling with Latent Fair Decisions »
YooJung Choi · Guy Van den Broeck -
2020 Poster: Efficient Generation of Structured Objects with Constrained Adversarial Networks »
Luca Di Liello · Pierfrancesco Ardino · Jacopo Gobbi · Paolo Morettin · Stefano Teso · Andrea Passerini -
2020 Poster: Counterexample-Guided Learning of Monotonic Neural Networks »
Aishwarya Sivaraman · Golnoosh Farnadi · Todd Millstein · Guy Van den Broeck -
2019 : Invited Talk (Guy Van den Broeck) »
Guy Van den Broeck -
2019 : Poster Spotlights A (23 posters) »
DongHa Bahn · Xiaoran Xu · Shih-Chieh Su · Daniel Cunnington · Wonseok Hwang · Sarthak Dash · Alberto Camacho · Theodoros Salonidis · Shiyang Li · Yuyu Zhang · Habibeh Naderi · Zhe Zeng · Pasha Khosravi · Pedro Colon-Hernandez · Dimitris Diochnos · David Windridge · Robin Manhaeve · Vaishak Belle · Brendan Juba · Naveen Sundar Govindarajulu · Joe Bockhorst -
2019 Poster: Towards Hardware-Aware Tractable Learning of Probabilistic Models »
Laura Galindez Olascoaga · Wannes Meert · Nimish Shah · Marian Verhelst · Guy Van den Broeck -
2019 Poster: On Tractable Computation of Expected Predictions »
Pasha Khosravi · YooJung Choi · Yitao Liang · Antonio Vergari · Guy Van den Broeck -
2019 Poster: Smoothing Structured Decomposable Circuits »
Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli -
2019 Spotlight: Smoothing Structured Decomposable Circuits »
Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli -
2018 Poster: Approximate Knowledge Compilation by Online Collapsed Importance Sampling »
Tal Friedman · Guy Van den Broeck -
2018 Oral: Approximate Knowledge Compilation by Online Collapsed Importance Sampling »
Tal Friedman · Guy Van den Broeck -
2017 Workshop: NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks »
Alex Dimakis · Nikolaos Vasiloglou · Guy Van den Broeck · Alexander Ihler · Assaf Araki -
2016 Poster: New Liftable Classes for First-Order Probabilistic Inference »
Seyed Mehran Kazemi · Angelika Kimmig · Guy Van den Broeck · David Poole -
2015 Poster: Tractable Learning for Complex Probability Queries »
Jessa Bekker · Jesse Davis · Arthur Choi · Adnan Darwiche · Guy Van den Broeck -
2013 Poster: On the Complexity and Approximation of Binary Evidence in Lifted Inference »
Guy Van den Broeck · Adnan Darwiche -
2013 Spotlight: On the Complexity and Approximation of Binary Evidence in Lifted Inference »
Guy Van den Broeck · Adnan Darwiche -
2011 Poster: On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference »
Guy Van den Broeck -
2011 Oral: On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference »
Guy Van den Broeck