Timezone: »
The literature on ranking from ordinal data is vast, and there are several ways to aggregate overall preferences from pairwise comparisons between objects. In particular, it is well-known that any Nash equilibrium of the zero-sum game induced by the preference matrix defines a natural solution concept (winning distribution over objects) known as a von Neumann winner. Many real-world problems, however, are inevitably multi-criteria, with different pairwise preferences governing the different criteria. In this work, we generalize the notion of a von Neumann winner to the multi-criteria setting by taking inspiration from Blackwell’s approachability. Our framework allows for non-linear aggregation of preferences across criteria, and generalizes the linearization-based approach from multi-objective optimization.
From a theoretical standpoint, we show that the Blackwell winner of a multi-criteria problem instance can be computed as the solution to a convex optimization problem. Furthermore, given random samples of pairwise comparisons, we show that a simple, "plug-in" estimator achieves (near-)optimal minimax sample complexity. Finally, we showcase the practical utility of our framework in a user study on autonomous driving, where we find that the Blackwell winner outperforms the von Neumann winner for the overall preferences.
Author Information
Kush Bhatia (UC Berkeley)
Ashwin Pananjady (UC Berkeley)
Peter Bartlett (UC Berkeley)
Anca Dragan (UC Berkeley)
Martin Wainwright (UC Berkeley)
More from the Same Authors
-
2021 : B-Pref: Benchmarking Preference-Based Reinforcement Learning »
Kimin Lee · Laura Smith · Anca Dragan · Pieter Abbeel -
2021 Spotlight: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 : The Effects of Reward Misspecification: Mapping and Mitigating Misaligned Models »
Alexander Pan · Kush Bhatia · Jacob Steinhardt -
2022 : Time-Efficient Reward Learning via Visually Assisted Cluster Ranking »
David Zhang · Micah Carroll · Andreea Bobu · Anca Dragan -
2022 : Optimal Behavior Prior: Data-Efficient Human Models for Improved Human-AI Collaboration »
Mesut Yang · Micah Carroll · Anca Dragan -
2022 : Aligning Robot Representations with Humans »
Andreea Bobu · Andi Peng · Pulkit Agrawal · Julie A Shah · Anca Dragan -
2022 Workshop: 5th Robot Learning Workshop: Trustworthy Robotics »
Alex Bewley · Roberto Calandra · Anca Dragan · Igor Gilitschenski · Emily Hannigan · Masha Itkina · Hamidreza Kasaei · Jens Kober · Danica Kragic · Nathan Lambert · Julien PEREZ · Fabio Ramos · Ransalu Senanayake · Jonathan Tompson · Vincent Vanhoucke · Markus Wulfmeier -
2022 : Anca Dragan: Learning human preferences from language »
Anca Dragan -
2022 Poster: First Contact: Unsupervised Human-Machine Co-Adaptation via Mutual Information Maximization »
Siddharth Reddy · Sergey Levine · Anca Dragan -
2022 Poster: Uni[MASK]: Unified Inference in Sequential Decision Problems »
Micah Carroll · Orr Paradise · Jessy Lin · Raluca Georgescu · Mingfei Sun · David Bignell · Stephanie Milani · Katja Hofmann · Matthew Hausknecht · Anca Dragan · Sam Devlin -
2021 : Panel II: Machine decisions »
Anca Dragan · Karen Levy · Himabindu Lakkaraju · Ariel Rosenfeld · Maithra Raghu · Irene Y Chen -
2021 Poster: Near Optimal Policy Optimization via REPS »
Aldo Pacchiano · Jonathan N Lee · Peter Bartlett · Ofir Nachum -
2021 : BASALT: A MineRL Competition on Solving Human-Judged Task + Q&A »
Rohin Shah · Cody Wild · Steven Wang · Neel Alex · Brandon Houghton · William Guss · Sharada Mohanty · Stephanie Milani · Nicholay Topin · Pieter Abbeel · Stuart Russell · Anca Dragan -
2021 Poster: On the Theory of Reinforcement Learning with Once-per-Episode Feedback »
Niladri Chatterji · Aldo Pacchiano · Peter Bartlett · Michael Jordan -
2021 Poster: Pragmatic Image Compression for Human-in-the-Loop Decision-Making »
Sid Reddy · Anca Dragan · Sergey Levine -
2021 Invited Talk: Benign Overfitting »
Peter Bartlett -
2021 Poster: Adversarial Examples in Multi-Layer Random ReLU Networks »
Peter Bartlett · Sebastien Bubeck · Yeshwanth Cherapanamjeri -
2020 : Keynote: Anca Dragan »
Anca Dragan -
2020 : Mini-panel discussion 3 - Prioritizing Real World RL Challenges »
Chelsea Finn · Thomas Dietterich · Angela Schoellig · Anca Dragan · Anusha Nagabandi · Doina Precup -
2020 Poster: Online learning with dynamics: A minimax perspective »
Kush Bhatia · Karthik Sridharan -
2020 : Q&A for invited speaker, Anca Dragan »
Anca Dragan -
2020 : Getting human-robot interaction strategies to emerge from first principles »
Anca Dragan -
2020 Poster: FedSplit: an algorithmic framework for fast federated optimization »
Reese Pathak · Martin Wainwright -
2020 Poster: AvE: Assistance via Empowerment »
Yuqing Du · Stas Tiomkin · Emre Kiciman · Daniel Polani · Pieter Abbeel · Anca Dragan -
2020 Poster: Reward-rational (implicit) choice: A unifying formalism for reward learning »
Hong Jun Jeon · Smitha Milli · Anca Dragan -
2019 Workshop: Machine Learning for Autonomous Driving »
Rowan McAllister · Nicholas Rhinehart · Fisher Yu · Li Erran Li · Anca Dragan -
2019 Poster: On the Utility of Learning about Humans for Human-AI Coordination »
Micah Carroll · Rohin Shah · Mark Ho · Tom Griffiths · Sanjit Seshia · Pieter Abbeel · Anca Dragan -
2018 : Anca Dragan »
Anca Dragan -
2018 : Opening Remark »
Li Erran Li · Anca Dragan -
2018 Workshop: NIPS Workshop on Machine Learning for Intelligent Transportation Systems 2018 »
Li Erran Li · Anca Dragan · Juan Carlos Niebles · Silvio Savarese -
2018 : Anca Dragan »
Anca Dragan -
2018 Poster: Gen-Oja: Simple & Efficient Algorithm for Streaming Generalized Eigenvector Computation »
Kush Bhatia · Aldo Pacchiano · Nicolas Flammarion · Peter Bartlett · Michael Jordan -
2018 Poster: Horizon-Independent Minimax Linear Regression »
Alan Malek · Peter Bartlett -
2018 Poster: FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network »
Aditya Kusupati · Manish Singh · Kush Bhatia · Ashish Kumar · Prateek Jain · Manik Varma -
2018 Poster: Theoretical guarantees for EM under misspecified Gaussian mixture models »
Raaz Dwivedi · nhật Hồ · Koulik Khamaru · Martin Wainwright · Michael Jordan -
2018 Poster: Where Do You Think You're Going?: Inferring Beliefs about Dynamics from Behavior »
Sid Reddy · Anca Dragan · Sergey Levine -
2017 : Morning panel discussion »
Jürgen Schmidhuber · Noah Goodman · Anca Dragan · Pushmeet Kohli · Dhruv Batra -
2017 : "Communication via Physical Action" »
Anca Dragan -
2017 Workshop: 2017 NIPS Workshop on Machine Learning for Intelligent Transportation Systems »
Li Erran Li · Anca Dragan · Juan Carlos Niebles · Silvio Savarese -
2017 : Invited talk: Robot Transparency as Optimal Control »
Anca Dragan -
2017 Poster: Near Minimax Optimal Players for the Finite-Time 3-Expert Prediction Problem »
Yasin Abbasi Yadkori · Peter Bartlett · Victor Gabillon -
2017 Poster: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: Early stopping for kernel boosting algorithms: A general analysis with localized complexities »
Yuting Wei · Fanny Yang · Martin Wainwright -
2017 Poster: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Spotlight: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Spotlight: Early stopping for kernel boosting algorithms: A general analysis with localized complexities »
Yuting Wei · Fanny Yang · Martin Wainwright -
2017 Oral: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: Alternating minimization for dictionary learning with random initialization »
Niladri Chatterji · Peter Bartlett -
2017 Poster: Consistent Robust Regression »
Kush Bhatia · Prateek Jain · Parameswaran Kamalaruban · Purushottam Kar -
2017 Poster: A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control »
Fanny Yang · Aaditya Ramdas · Kevin Jamieson · Martin Wainwright -
2017 Poster: Acceleration and Averaging in Stochastic Descent Dynamics »
Walid Krichene · Peter Bartlett -
2017 Spotlight: A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control »
Fanny Yang · Aaditya Ramdas · Kevin Jamieson · Martin Wainwright -
2017 Spotlight: Acceleration and Averaging in Stochastic Descent Dynamics »
Walid Krichene · Peter Bartlett -
2016 : Learning Reliable Objectives »
Anca Dragan -
2016 : Invited Talk: Autonomous Cars that Coordinate with People (Anca Dragan, Berkeley) »
Anca Dragan -
2016 Poster: Adaptive Averaging in Accelerated Descent Dynamics »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2016 Poster: Cooperative Inverse Reinforcement Learning »
Dylan Hadfield-Menell · Stuart J Russell · Pieter Abbeel · Anca Dragan -
2015 Poster: Accelerated Mirror Descent in Continuous and Discrete Time »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2015 Spotlight: Accelerated Mirror Descent in Continuous and Discrete Time »
Walid Krichene · Alexandre Bayen · Peter Bartlett -
2015 Poster: Minimax Time Series Prediction »
Wouter Koolen · Alan Malek · Peter Bartlett · Yasin Abbasi Yadkori -
2014 Workshop: Large-scale reinforcement learning and Markov decision problems »
Benjamin Van Roy · Mohammad Ghavamzadeh · Peter Bartlett · Yasin Abbasi Yadkori · Ambuj Tewari -
2014 Poster: Large-Margin Convex Polytope Machine »
Alex Kantchelian · Michael C Tschantz · Ling Huang · Peter Bartlett · Anthony D Joseph · J. D. Tygar -
2014 Poster: Efficient Minimax Strategies for Square Loss Games »
Wouter M Koolen · Alan Malek · Peter Bartlett -
2013 Workshop: Resource-Efficient Machine Learning »
Yevgeny Seldin · Yasin Abbasi Yadkori · Yacov Crammer · Ralf Herbrich · Peter Bartlett -
2013 Poster: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Spotlight: How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal »
Jacob D Abernethy · Peter Bartlett · Rafael Frongillo · Andre Wibisono -
2013 Poster: Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions »
Yasin Abbasi Yadkori · Peter Bartlett · Varun Kanade · Yevgeny Seldin · Csaba Szepesvari -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2011 Session: Opening Remarks and Awards »
Terrence Sejnowski · Peter Bartlett · Fernando Pereira -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2007 Oral: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs »
Ambuj Tewari · Peter Bartlett -
2006 Poster: Shifting, One-Inclusion Mistake Bounds and Tight Multiclass Expected Risk Bounds »
Benjamin Rubinstein · Peter Bartlett · J. Hyam Rubinstein -
2006 Poster: Sample Complexity of Policy Search with Known Dynamics »
Peter Bartlett · Ambuj Tewari -
2006 Poster: AdaBoost is Consistent »
Peter Bartlett · Mikhail Traskin