Timezone: »
As learning solutions reach critical applications in social, industrial, and medical domains, the need to curtail their behavior has become paramount. There is now ample evidence that without explicit tailoring, learning can lead to biased, unsafe, and prejudiced solutions. To tackle these problems, we develop a generalization theory of constrained learning based on the probably approximately correct (PAC) learning framework. In particular, we show that imposing requirements does not make a learning problem harder in the sense that any PAC learnable class is also PAC constrained learnable using a constrained counterpart of the empirical risk minimization (ERM) rule. For typical parametrized models, however, this learner involves solving a constrained non-convex optimization program for which even obtaining a feasible solution is challenging. To overcome this issue, we prove that under mild conditions the empirical dual problem of constrained learning is also a PAC constrained learner that now leads to a practical constrained learning algorithm based solely on solving unconstrained problems. We analyze the generalization properties of this solution and use it to illustrate how constrained learning can address problems in fair and robust classification.
Author Information
Luiz Chamon (University of Pennsylvania)
Alejandro Ribeiro (University of Pennsylvania)
More from the Same Authors
-
2021 : State Augmented Constrained Reinforcement Learning: Overcoming the Limitations of Learning with Rewards »
Miguel Calvo-Fullana · Santiago Paternain · Alejandro Ribeiro -
2022 : Convolutional Neural Networks on Manifolds: From Graphs and Back »
Zhiyang Wang · Luana Ruiz · Alejandro Ribeiro -
2023 Poster: Resilient Constrained Learning »
Ignacio Hounie · Alejandro Ribeiro · Luiz F. O. Chamon -
2023 Poster: Explainable Brain Age Prediction using coVariance Neural Networks »
Saurabh Sihag · Gonzalo Mateos · Corey McMillan · Alejandro Ribeiro -
2023 Poster: Last-Iterate Convergent Policy Gradient Primal-Dual Methods for Constrained MDPs »
Dongsheng Ding · Chen-Yu Wei · Kaiqing Zhang · Alejandro Ribeiro -
2022 Poster: A Lagrangian Duality Approach to Active Learning »
Juan Elenter · Navid Naderializadeh · Alejandro Ribeiro -
2022 Poster: coVariance Neural Networks »
Saurabh Sihag · Gonzalo Mateos · Corey McMillan · Alejandro Ribeiro -
2021 Poster: Adversarial Robustness with Semi-Infinite Constrained Learning »
Alexander Robey · Luiz Chamon · George J. Pappas · Hamed Hassani · Alejandro Ribeiro -
2020 Poster: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Sinkhorn Barycenter via Functional Gradient Descent »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Spotlight: Sinkhorn Natural Gradient for Generative Models »
Zebang Shen · Zhenfu Wang · Alejandro Ribeiro · Hamed Hassani -
2020 Poster: Graphon Neural Networks and the Transferability of Graph Neural Networks »
Luana Ruiz · Luiz Chamon · Alejandro Ribeiro -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Constrained Reinforcement Learning Has Zero Duality Gap »
Santiago Paternain · Luiz Chamon · Miguel Calvo-Fullana · Alejandro Ribeiro -
2019 Poster: Stability of Graph Scattering Transforms »
Fernando Gama · Alejandro Ribeiro · Joan Bruna -
2017 Poster: Approximate Supermodularity Bounds for Experimental Design »
Luiz Chamon · Alejandro Ribeiro -
2017 Poster: First-Order Adaptive Sample Size Methods to Reduce Complexity of Empirical Risk Minimization »
Aryan Mokhtari · Alejandro Ribeiro -
2016 Poster: Adaptive Newton Method for Empirical Risk Minimization to Statistical Accuracy »
Aryan Mokhtari · Hadi Daneshmand · Aurelien Lucchi · Thomas Hofmann · Alejandro Ribeiro