Timezone: »
Sparse sequences of neural spikes are posited to underlie aspects of working memory, motor production, and learning. Discovering these sequences in an unsupervised manner is a longstanding problem in statistical neuroscience. Promising recent work utilized a convolutive nonnegative matrix factorization model to tackle this challenge. However, this model requires spike times to be discretized, utilizes a sub-optimal least-squares criterion, and does not provide uncertainty estimates for model predictions or estimated parameters. We address each of these shortcomings by developing a point process model that characterizes fine-scale sequences at the level of individual spikes and represents sequence occurrences as a small number of marked events in continuous time. This ultra-sparse representation of sequence events opens new possibilities for spike train modeling. For example, we introduce learnable time warping parameters to model sequences of varying duration, which have been experimentally observed in neural circuits. We demonstrate these advantages on recordings from songbird higher vocal center and rodent hippocampus.
Author Information
Alex Williams (Stanford University)
Anthony Degleris (Stanford University)
Yixin Wang (Columbia University)
Scott Linderman (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Oral: Point process models for sequence detection in high-dimensional neural spike trains »
Fri Dec 11th 02:00 -- 02:15 AM Room Orals & Spotlights: Neuroscience/Probabilistic
More from the Same Authors
-
2020 Workshop: Learning Meaningful Representations of Life (LMRL.org) »
Elizabeth Wood · Debora Marks · Ray Jones · Adji Bousso Dieng · Alan Aspuru-Guzik · Anshul Kundaje · Barbara Engelhardt · Chang Liu · Edward Boyden · Kresten Lindorff-Larsen · Mor Nitzan · Smita Krishnaswamy · Wouter Boomsma · Yixin Wang · David Van Valen · Orr Ashenberg -
2020 Poster: Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations »
Joshua Glaser · Matthew Whiteway · John Cunningham · Liam Paninski · Scott Linderman -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2019 Poster: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos »
Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski -
2019 Poster: Universality and individuality in neural dynamics across large populations of recurrent networks »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2019 Spotlight: Universality and individuality in neural dynamics across large populations of recurrent networks »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo -
2019 Poster: Variational Bayes under Model Misspecification »
Yixin Wang · David Blei -
2019 Poster: Using Embeddings to Correct for Unobserved Confounding in Networks »
Victor Veitch · Yixin Wang · David Blei -
2019 Poster: Mutually Regressive Point Processes »
Ifigeneia Apostolopoulou · Scott Linderman · Kyle Miller · Artur Dubrawski -
2019 Poster: Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics »
Niru Maheswaranathan · Alex Williams · Matthew Golub · Surya Ganguli · David Sussillo