Timezone: »
Continuous-time event data are common in applications such as individual behavior data, financial transactions, and medical health records. Modeling such data can be very challenging, in particular for applications with many different types of events,since it requires a model to predict the event types as well as the time of occurrence. Recurrent neural networks that parameterize time-varying intensity functions are the current state-of-the-art for predictive modeling with such data. These models typically assume that all event sequences come from the same data distribution. However, in many applications event sequences are generated by different sources,or users, and their characteristics can be very different. In this paper, we extend the broad class of neural marked point process models to mixtures of latent embeddings,where each mixture component models the characteristic traits of a given user. Our approach relies on augmenting these models with a latent variable that encodes user characteristics, represented by a mixture model over user behavior that is trained via amortized variational inference. We evaluate our methods on four large real-world datasets and demonstrate systematic improvements from our approach over existing work for a variety of predictive metrics such as log-likelihood, next event ranking, and source-of-sequence identification.
Author Information
Alex Boyd (UC Irvine)
Robert Bamler (University of Tübingen)
Stephan Mandt (University of California, Irvine)

Stephan Mandt is an Associate Professor of Computer Science and Statistics at the University of California, Irvine. From 2016 until 2018, he was a Senior Researcher and Head of the statistical machine learning group at Disney Research in Pittsburgh and Los Angeles. He held previous postdoctoral positions at Columbia University and Princeton University. Stephan holds a Ph.D. in Theoretical Physics from the University of Cologne, where he received the German National Merit Scholarship. He is furthermore a recipient of the NSF CAREER Award, the UCI ICS Mid-Career Excellence in Research Award, the German Research Foundation's Mercator Fellowship, a Kavli Fellow of the U.S. National Academy of Sciences, a member of the ELLIS Society, and a former visiting researcher at Google Brain. Stephan regularly serves as an Area Chair, Action Editor, or Editorial Board member for NeurIPS, ICML, AAAI, ICLR, TMLR, and JMLR. His research is currently supported by NSF, DARPA, DOE, Disney, Intel, and Qualcomm.
Padhraic Smyth (University of California, Irvine)
More from the Same Authors
-
2021 : Analyzing High-Resolution Clouds and Convection using Multi-Channel VAEs »
Harshini Mangipudi · Griffin Mooers · Mike Pritchard · Tom Beucler · Stephan Mandt -
2021 : Structured Stochastic Gradient MCMC: a hybrid VI and MCMC approach »
Antonios Alexos · Alex Boyd · Stephan Mandt -
2022 : Probabilistic Querying of Continuous-Time Sequential Events »
Alex Boyd · Yuxin Chang · Stephan Mandt · Padhraic Smyth -
2022 : An Unsupervised Learning Perspective on the Dynamic Contribution to Extreme Precipitation Changes »
Griffin Mooers · Tom Beucler · Mike Pritchard · Stephan Mandt -
2023 Poster: Zero-Shot Batch-Level Anomaly Detection »
Aodong Li · Chen Qiu · Marius Kloft · Padhraic Smyth · Maja Rudolph · Stephan Mandt -
2023 Poster: Estimating the Rate-Distortion Function by Wasserstein Gradient Descent »
Yibo Yang · Stephan Eckstein · Marcel Nutz · Stephan Mandt -
2023 Poster: Lossy Image Compression with Conditional Diffusion Models »
Ruihan Yang · Stephan Mandt -
2023 Poster: ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate models »
Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus C. Will · Gunnar Behrens · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah L. Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Julius Busecke · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Tian Zheng · Mike Pritchard -
2023 Oral: ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate models »
Sungduk Yu · Walter Hannah · Liran Peng · Jerry Lin · Mohamed Aziz Bhouri · Ritwik Gupta · Björn Lütjens · Justus C. Will · Gunnar Behrens · Nora Loose · Charles Stern · Tom Beucler · Bryce Harrop · Benjamin Hillman · Andrea Jenney · Savannah L. Ferretti · Nana Liu · Animashree Anandkumar · Noah Brenowitz · Veronika Eyring · Nicholas Geneva · Pierre Gentine · Stephan Mandt · Jaideep Pathak · Akshay Subramaniam · Carl Vondrick · Rose Yu · Laure Zanna · Ryan Abernathey · Fiaz Ahmed · David Bader · Pierre Baldi · Elizabeth Barnes · Christopher Bretherton · Julius Busecke · Peter Caldwell · Wayne Chuang · Yilun Han · YU HUANG · Fernando Iglesias-Suarez · Sanket Jantre · Karthik Kashinath · Marat Khairoutdinov · Thorsten Kurth · Nicholas Lutsko · Po-Lun Ma · Griffin Mooers · J. David Neelin · David Randall · Sara Shamekh · Mark Taylor · Nathan Urban · Janni Yuval · Guang Zhang · Tian Zheng · Mike Pritchard -
2023 Workshop: Deep Generative Models for Health »
Emanuele Palumbo · Laura Manduchi · Sonia Laguna · Melanie F. Pradier · Vincent Fortuin · Stephan Mandt · Julia Vogt -
2022 Panel: Panel 5B-4: Predictive Querying for… & On the difficulty… »
Alex Boyd · Jonas Mikhaeil -
2022 : Q & A »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 Tutorial: Data Compression with Machine Learning »
Karen Ullrich · Yibo Yang · Stephan Mandt -
2022 : Tutorial part 1 »
Yibo Yang · Karen Ullrich · Stephan Mandt -
2022 Poster: Predictive Querying for Autoregressive Neural Sequence Models »
Alex Boyd · Samuel Showalter · Stephan Mandt · Padhraic Smyth -
2021 Poster: Detecting and Adapting to Irregular Distribution Shifts in Bayesian Online Learning »
Aodong Li · Alex Boyd · Padhraic Smyth · Stephan Mandt -
2021 Poster: Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration »
Gavin Kerrigan · Padhraic Smyth · Mark Steyvers -
2020 : Q/A and Discussion for ML Theory Session »
Karthik Kashinath · Mayur Mudigonda · Stephan Mandt · Rose Yu -
2020 : Stephan Mandt »
Stephan Mandt -
2020 Poster: Can I Trust My Fairness Metric? Assessing Fairness with Unlabeled Data and Bayesian Inference »
Disi Ji · Padhraic Smyth · Mark Steyvers -
2020 Poster: Improving Inference for Neural Image Compression »
Yibo Yang · Robert Bamler · Stephan Mandt -
2019 Poster: Deep Generative Video Compression »
Salvator Lombardo · JUN HAN · Christopher Schroers · Stephan Mandt -
2017 : Coffee break and Poster Session II »
Mohamed Kane · Albert Haque · Vagelis Papalexakis · John Guibas · Peter Li · Carlos Arias · Eric Nalisnick · Padhraic Smyth · Frank Rudzicz · Xia Zhu · Theodore Willke · Noemie Elhadad · Hans Raffauf · Harini Suresh · Paroma Varma · Yisong Yue · Ognjen (Oggi) Rudovic · Luca Foschini · Syed Rameel Ahmad · Hasham ul Haq · Valerio Maggio · Giuseppe Jurman · Sonali Parbhoo · Pouya Bashivan · Jyoti Islam · Mirco Musolesi · Chris Wu · Alexander Ratner · Jared Dunnmon · Cristóbal Esteban · Aram Galstyan · Greg Ver Steeg · Hrant Khachatrian · Marc Górriz · Mihaela van der Schaar · Anton Nemchenko · Manasi Patwardhan · Tanay Tandon -
2017 : Introduction »
Cheng Zhang · Francisco Ruiz · Dustin Tran · James McInerney · Stephan Mandt -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: Perturbative Black Box Variational Inference »
Robert Bamler · Cheng Zhang · Manfred Opper · Stephan Mandt -
2016 Workshop: Towards an Artificial Intelligence for Data Science »
Charles Sutton · James Geddes · Zoubin Ghahramani · Padhraic Smyth · Chris Williams -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Poster: Exponential Family Embeddings »
Maja Rudolph · Francisco Ruiz · Stephan Mandt · David Blei -
2015 : Finding Sparse Features in Strongly Confounded Medial Data »
Stephan Mandt · Florian Wenzel -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2014 Poster: Smoothed Gradients for Stochastic Variational Inference »
Stephan Mandt · David Blei -
2012 Workshop: Algorithmic and Statistical Approaches for Large Social Network Data Sets »
Michael Goodrich · Pavel N Krivitsky · David M Mount · Christopher DuBois · Padhraic Smyth -
2011 Oral: Continuous-Time Regression Models for Longitudinal Networks »
Duy Q Vu · Arthur Asuncion · David Hunter · Padhraic Smyth -
2011 Poster: Continuous-Time Regression Models for Longitudinal Networks »
Duy Q Vu · Arthur Asuncion · David Hunter · Padhraic Smyth -
2010 Spotlight: Learning concept graphs from text with stick-breaking priors »
America Chambers · Padhraic Smyth · Mark Steyvers -
2010 Poster: Learning concept graphs from text with stick-breaking priors »
America Chambers · Padhraic Smyth · Mark Steyvers -
2009 Poster: Particle-based Variational Inference for Continuous Systems »
Alexander Ihler · Andrew Frank · Padhraic Smyth -
2008 Poster: Asynchronous Distributed Learning of Topic Models »
Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Spotlight: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Poster: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2006 Poster: Modeling General and Specific Aspects of Documents with a Probabilistic Topic Model »
Chaitanya Chemudugunta · Padhraic Smyth · Mark Steyvers -
2006 Poster: Learning Time-Intensity Profiles of Human Activity using Non-Parametric Bayesian Models »
Alexander Ihler · Padhraic Smyth -
2006 Poster: Hierarchical Dirichlet Processes with Random Effects »
Seyoung Kim · Padhraic Smyth