Timezone: »
In a social system, the self-interest of agents can be detrimental to the collective good, sometimes leading to social dilemmas. To resolve such a conflict, a central designer may intervene by either redesigning the system or incentivizing the agents to change their behaviors. To be effective, the designer must anticipate how the agents react to the intervention, which is dictated by their often unknown payoff functions. Therefore, learning about the agents is a prerequisite for intervention. In this paper, we provide a unified framework for learning and intervention in games. We cast the equilibria of games as individual layers and integrate them into an end-to-end optimization framework. To enable the backward propagation through the equilibria of games, we propose two approaches, respectively based on explicit and implicit differentiation. Specifically, we cast the equilibria as the solutions to variational inequalities (VIs). The explicit approach unrolls the projection method for solving VIs, while the implicit approach exploits the sensitivity of the solutions to VIs. At the core of both approaches is the differentiation through a projection operator. Moreover, we establish the correctness of both approaches and identify the conditions under which one approach is more desirable than the other. The analytical results are validated using several real-world problems.
Author Information
Jiayang Li (Northwestern University)
Jing Yu (Northwestern University)
Yu Nie (Northwestern University)
Zhaoran Wang (Northwestern University)
More from the Same Authors
-
2020 Poster: Pontryagin Differentiable Programming: An End-to-End Learning and Control Framework »
Wanxin Jin · Zhaoran Wang · Zhuoran Yang · Shaoshuai Mou -
2020 Poster: Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory »
Yufeng Zhang · Qi Cai · Zhuoran Yang · Yongxin Chen · Zhaoran Wang -
2020 Oral: Can Temporal-Difference and Q-Learning Learn Representation? A Mean-Field Theory »
Yufeng Zhang · Qi Cai · Zhuoran Yang · Yongxin Chen · Zhaoran Wang -
2020 Poster: Provably Efficient Neural GTD for Off-Policy Learning »
Hoi-To Wai · Zhuoran Yang · Zhaoran Wang · Mingyi Hong -
2020 Poster: Dynamic Regret of Policy Optimization in Non-Stationary Environments »
Yingjie Fei · Zhuoran Yang · Zhaoran Wang · Qiaomin Xie -
2020 Poster: On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces »
Zhuoran Yang · Chi Jin · Zhaoran Wang · Mengdi Wang · Michael Jordan -
2020 Poster: Upper Confidence Primal-Dual Reinforcement Learning for CMDP with Adversarial Loss »
Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jieping Ye · Zhaoran Wang -
2020 Poster: Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret »
Yingjie Fei · Zhuoran Yang · Yudong Chen · Zhaoran Wang · Qiaomin Xie -
2020 Spotlight: Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff in Regret »
Yingjie Fei · Zhuoran Yang · Yudong Chen · Zhaoran Wang · Qiaomin Xie -
2019 : Poster Spotlight 2 »
Aaron Sidford · Mengdi Wang · Lin Yang · Yinyu Ye · Zuyue Fu · Zhuoran Yang · Yongxin Chen · Zhaoran Wang · Ofir Nachum · Bo Dai · Ilya Kostrikov · Dale Schuurmans · Ziyang Tang · Yihao Feng · Lihong Li · Denny Zhou · Qiang Liu · Rodrigo Toro Icarte · Ethan Waldie · Toryn Klassen · Rick Valenzano · Margarita Castro · Simon Du · Sham Kakade · Ruosong Wang · Minshuo Chen · Tianyi Liu · Xingguo Li · Zhaoran Wang · Tuo Zhao · Philip Amortila · Doina Precup · Prakash Panangaden · Marc Bellemare -
2019 Poster: Statistical-Computational Tradeoff in Single Index Models »
Lingxiao Wang · Zhuoran Yang · Zhaoran Wang -
2019 Poster: Provably Global Convergence of Actor-Critic: A Case for Linear Quadratic Regulator with Ergodic Cost »
Zhuoran Yang · Yongxin Chen · Mingyi Hong · Zhaoran Wang -
2019 Poster: Variance Reduced Policy Evaluation with Smooth Function Approximation »
Hoi-To Wai · Mingyi Hong · Zhuoran Yang · Zhaoran Wang · Kexin Tang -
2019 Poster: Convergent Policy Optimization for Safe Reinforcement Learning »
Ming Yu · Zhuoran Yang · Mladen Kolar · Zhaoran Wang -
2018 Poster: Contrastive Learning from Pairwise Measurements »
Yi Chen · Zhuoran Yang · Yuchen Xie · Zhaoran Wang -
2018 Poster: Provable Gaussian Embedding with One Observation »
Ming Yu · Zhuoran Yang · Tuo Zhao · Mladen Kolar · Zhaoran Wang -
2018 Poster: Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization »
Hoi-To Wai · Zhuoran Yang · Zhaoran Wang · Mingyi Hong -
2017 Poster: Estimating High-dimensional Non-Gaussian Multiple Index Models via Stein’s Lemma »
Zhuoran Yang · Krishnakumar Balasubramanian · Zhaoran Wang · Han Liu