Timezone: »
As predictive models are increasingly being deployed in high-stakes decision-making, there has been a lot of interest in developing algorithms which can provide recourses to affected individuals. While developing such tools is important, it is even more critical to analyze and interpret a predictive model, and vet it thoroughly to ensure that the recourses it offers are meaningful and non-discriminatory before it is deployed in the real world. To this end, we propose a novel model agnostic framework called Actionable Recourse Summaries (AReS) to construct global counterfactual explanations which provide an interpretable and accurate summary of recourses for the entire population. We formulate a novel objective which simultaneously optimizes for correctness of the recourses and interpretability of the explanations, while minimizing overall recourse costs across the entire population. More specifically, our objective enables us to learn, with optimality guarantees on recourse correctness, a small number of compact rule sets each of which capture recourses for well defined subpopulations within the data. We also demonstrate theoretically that several of the prior approaches proposed to generate recourses for individuals are special cases of our framework. Experimental evaluation with real world datasets and user studies demonstrate that our framework can provide decision makers with a comprehensive overview of recourses corresponding to any black box model, and consequently help detect undesirable model biases and discrimination.
Author Information
Kaivalya Rawal (Harvard University)
Himabindu Lakkaraju (Harvard)
Hima Lakkaraju is an Assistant Professor at Harvard University focusing on explainability, fairness, and robustness of machine learning models. She has also been working with various domain experts in criminal justice and healthcare to understand the real world implications of explainable and fair ML. Hima has recently been named one of the 35 innovators under 35 by MIT Tech Review, and has received best paper awards at SIAM International Conference on Data Mining (SDM) and INFORMS. She has given invited workshop talks at ICML, NeurIPS, AAAI, and CVPR, and her research has also been covered by various popular media outlets including the New York Times, MIT Tech Review, TIME, and Forbes. For more information, please visit: https://himalakkaraju.github.io/
More from the Same Authors
-
2022 : A Human-Centric Take on Model Monitoring »
Murtuza Shergadwala · Himabindu Lakkaraju · Krishnaram Kenthapadi -
2022 : Invited talk (Dr Hima Lakkaraju) - "A Brief History of Explainable AI: From Simple Rules to Large Pretrained Models" »
Himabindu Lakkaraju -
2021 : Panel II: Machine decisions »
Anca Dragan · Karen Levy · Himabindu Lakkaraju · Ariel Rosenfeld · Maithra Raghu · Irene Y Chen -
2021 : Q/A Session »
Alexander Feldman · Himabindu Lakkaraju -
2021 : [IT3] Towards Reliable and Robust Model Explanations »
Himabindu Lakkaraju -
2021 : Invited Talk: Towards Reliable and Robust Model Explanations »
Himabindu Lakkaraju -
2020 Poster: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Spotlight: Incorporating Interpretable Output Constraints in Bayesian Neural Networks »
Wanqian Yang · Lars Lorch · Moritz Graule · Himabindu Lakkaraju · Finale Doshi-Velez -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities Q&A »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh -
2020 Tutorial: (Track2) Explaining Machine Learning Predictions: State-of-the-art, Challenges, and Opportunities »
Himabindu Lakkaraju · Julius Adebayo · Sameer Singh