Timezone: »
Classical learning theory suggests that the optimal generalization performance of a machine learning model should occur at an intermediate model complexity, with simpler models exhibiting high bias and more complex models exhibiting high variance of the predictive function. However, such a simple trade-off does not adequately describe deep learning models that simultaneously attain low bias and variance in the heavily overparameterized regime. A primary obstacle in explaining this behavior is that deep learning algorithms typically involve multiple sources of randomness whose individual contributions are not visible in the total variance. To enable fine-grained analysis, we describe an interpretable, symmetric decomposition of the variance into terms associated with the randomness from sampling, initialization, and the labels. Moreover, we compute the high-dimensional asymptotic behavior of this decomposition for random feature kernel regression, and analyze the strikingly rich phenomenology that arises. We find that the bias decreases monotonically with the network width, but the variance terms exhibit non-monotonic behavior and can diverge at the interpolation boundary, even in the absence of label noise. The divergence is caused by the interaction between sampling and initialization and can therefore be eliminated by marginalizing over samples (i.e. bagging) or over the initial parameters (i.e. ensemble learning).
Author Information
Ben Adlam (Google)
Jeffrey Pennington (Google Brain)
More from the Same Authors
-
2022 : A Second-order Regression Model Shows Edge of Stability Behavior »
Fabian Pedregosa · Atish Agarwala · Jeffrey Pennington -
2022 Poster: Implicit Regularization or Implicit Conditioning? Exact Risk Trajectories of SGD in High Dimensions »
Courtney Paquette · Elliot Paquette · Ben Adlam · Jeffrey Pennington -
2022 Poster: Precise Learning Curves and Higher-Order Scalings for Dot-product Kernel Regression »
Lechao Xiao · Hong Hu · Theodor Misiakiewicz · Yue Lu · Jeffrey Pennington -
2021 Poster: Overparameterization Improves Robustness to Covariate Shift in High Dimensions »
Nilesh Tripuraneni · Ben Adlam · Jeffrey Pennington -
2020 Poster: Finite Versus Infinite Neural Networks: an Empirical Study »
Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein -
2020 Spotlight: Finite Versus Infinite Neural Networks: an Empirical Study »
Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein -
2020 Poster: The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks »
Wei Hu · Lechao Xiao · Ben Adlam · Jeffrey Pennington -
2020 Spotlight: The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks »
Wei Hu · Lechao Xiao · Ben Adlam · Jeffrey Pennington -
2019 Poster: Learning GANs and Ensembles Using Discrepancy »
Ben Adlam · Corinna Cortes · Mehryar Mohri · Ningshan Zhang -
2019 Poster: Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent »
Jaehoon Lee · Lechao Xiao · Samuel Schoenholz · Yasaman Bahri · Roman Novak · Jascha Sohl-Dickstein · Jeffrey Pennington -
2018 Poster: The Spectrum of the Fisher Information Matrix of a Single-Hidden-Layer Neural Network »
Jeffrey Pennington · Pratik Worah -
2017 Spotlight: Nonlinear random matrix theory for deep learning »
Jeffrey Pennington · Pratik Worah -
2017 Poster: Nonlinear random matrix theory for deep learning »
Jeffrey Pennington · Pratik Worah -
2017 Poster: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice »
Jeffrey Pennington · Samuel Schoenholz · Surya Ganguli -
2015 Poster: Spherical Random Features for Polynomial Kernels »
Jeffrey Pennington · Felix Yu · Sanjiv Kumar -
2015 Spotlight: Spherical Random Features for Polynomial Kernels »
Jeffrey Pennington · Felix Yu · Sanjiv Kumar