Timezone: »
A common goal in the analysis of neural data is to compress large population recordings into sets of interpretable, low-dimensional latent trajectories. This problem can be approached using Gaussian process (GP)-based methods which provide uncertainty quantification and principled model selection. However, standard GP priors do not distinguish between underlying dynamical processes and other forms of temporal autocorrelation. Here, we propose a new family of “dynamical” priors over trajectories, in the form of GP covariance functions that express a property shared by most dynamical systems: temporal non-reversibility. Non-reversibility is a universal signature of autonomous dynamical systems whose state trajectories follow consistent flow fields, such that any observed trajectory could not occur in reverse. Our new multi-output GP kernels can be used as drop-in replacements for standard kernels in multivariate regression, but also in latent variable models such as Gaussian process factor analysis (GPFA). We therefore introduce GPFADS (Gaussian Process Factor Analysis with Dynamical Structure), which models single-trial neural population activity using low-dimensional, non-reversible latent processes. Unlike previously proposed non-reversible multi-output kernels, ours admits a Kronecker factorization enabling fast and memory-efficient learning and inference. We apply GPFADS to synthetic data and show that it correctly recovers ground truth phase portraits. GPFADS also provides a probabilistic generalization of jPCA, a method originally developed for identifying latent rotational dynamics in neural data. When applied to monkey M1 neural recordings, GPFADS discovers latent trajectories with strong dynamical structure in the form of rotations.
Author Information
Virginia Rutten (Gatsby Computational Neuroscience Unit (UCL))
Alberto Bernacchia (MediaTek Research)
Maneesh Sahani (Gatsby Unit, UCL)
Guillaume Hennequin (University of Cambridge)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Oral: Non-reversible Gaussian processes for identifying latent dynamical structure in neural data »
Thu. Dec 10th 02:15 -- 02:30 PM Room Orals & Spotlights: Neuroscience
More from the Same Authors
-
2021 Spotlight: Probabilistic Tensor Decomposition of Neural Population Spiking Activity »
Hugo Soulat · Sepiedeh Keshavarzi · Troy Margrie · Maneesh Sahani -
2021 : How to distribute data across tasks for meta-learning? »
Alexandru Cioba · Michael Bromberg · Qian Wang · RITWIK NIYOGI · Georgios Batzolis · Jezabel Garcia · Da-shan Shiu · Alberto Bernacchia -
2022 : Gradient Descent: Robustness to Adversarial Corruption »
Fu-Chieh Chang · Farhang Nabiei · Pei-Yuan Wu · Alexandru Cioba · Sattar Vakili · Alberto Bernacchia -
2023 Poster: Successor-Predecessor Intrinsic Exploration »
Changmin Yu · Neil Burgess · Samuel J Gershman · Maneesh Sahani -
2023 Poster: A State Representation for Diminishing Rewards »
Ted Moskovitz · Samo Hromadka · Ahmed Touati · Diana Borsa · Maneesh Sahani -
2022 Poster: Structured Recognition for Generative Models with Explaining Away »
Changmin Yu · Hugo Soulat · Neil Burgess · Maneesh Sahani -
2021 : Cyclic orthogonal convolutions for long-range integration of features »
Federica Freddi · Jezabel Garcia · Michael Bromberg · Sepehr Jalali · Da-shan Shiu · Alvin Chua · Alberto Bernacchia -
2021 Poster: Scalable Bayesian GPFA with automatic relevance determination and discrete noise models »
Kristopher Jensen · Ta-Chu Kao · Jasmine Stone · Guillaume Hennequin -
2021 Poster: Natural continual learning: success is a journey, not (just) a destination »
Ta-Chu Kao · Kristopher Jensen · Gido van de Ven · Alberto Bernacchia · Guillaume Hennequin -
2021 Poster: Optimal Order Simple Regret for Gaussian Process Bandits »
Sattar Vakili · Nacime Bouziani · Sepehr Jalali · Alberto Bernacchia · Da-shan Shiu -
2021 Poster: Probabilistic Tensor Decomposition of Neural Population Spiking Activity »
Hugo Soulat · Sepiedeh Keshavarzi · Troy Margrie · Maneesh Sahani -
2020 Poster: Manifold GPLVMs for discovering non-Euclidean latent structure in neural data »
Kristopher Jensen · Ta-Chu Kao · Marco Tripodi · Guillaume Hennequin -
2020 Poster: Organizing recurrent network dynamics by task-computation to enable continual learning »
Lea Duncker · Laura N Driscoll · Krishna V Shenoy · Maneesh Sahani · David Sussillo -
2019 Poster: A neurally plausible model for online recognition and postdiction in a dynamical environment »
Li Kevin Wenliang · Maneesh Sahani -
2019 Poster: A neurally plausible model learns successor representations in partially observable environments »
Eszter Vértes · Maneesh Sahani -
2019 Oral: A neurally plausible model learns successor representations in partially observable environments »
Eszter Vértes · Maneesh Sahani -
2019 Poster: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Oral: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2018 Poster: Flexible and accurate inference and learning for deep generative models »
Eszter Vértes · Maneesh Sahani -
2018 Poster: Temporal alignment and latent Gaussian process factor inference in population spike trains »
Lea Duncker · Maneesh Sahani -
2018 Poster: Exact natural gradient in deep linear networks and its application to the nonlinear case »
Alberto Bernacchia · Mate Lengyel · Guillaume Hennequin -
2015 Poster: Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) »
Mijung Park · Wittawat Jitkrittum · Ahmad Qamar · Zoltan Szabo · Lars Buesing · Maneesh Sahani -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Extracting regions of interest from biological images with convolutional sparse block coding »
Marius Pachitariu · Adam M Packer · Noah Pettit · Henry Dalgleish · Michael Hausser · Maneesh Sahani -
2013 Poster: Recurrent linear models of simultaneously-recorded neural populations »
Marius Pachitariu · Biljana Petreska · Maneesh Sahani -
2013 Spotlight: Recurrent linear models of simultaneously-recorded neural populations »
Marius Pachitariu · Biljana Petreska · Maneesh Sahani -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Poster: Learning visual motion in recurrent neural networks »
Marius Pachitariu · Maneesh Sahani -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Dynamical segmentation of single trials from population neural data »
Biljana Petreska · Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2010 Session: The Sam Roweis Symposium »
Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2008 Poster: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity »
Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Oral: Inferring Elapsed Time from Stochastic Neural Processes »
Misha B Ahrens · Maneesh Sahani -
2007 Spotlight: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Elapsed Time from Stochastic Neural Processes »
Misha B Ahrens · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani