Timezone: »
Poster
Robust Sub-Gaussian Principal Component Analysis and Width-Independent Schatten Packing
Arun Jambulapati · Jerry Li · Kevin Tian
We develop two methods for the following fundamental statistical task: given an $\eps$-corrupted set of $n$ samples from a $d$-dimensional sub-Gaussian distribution, return an approximate top eigenvector of the covariance matrix. Our first robust PCA algorithm runs in polynomial time, returns a $1 - O(\eps\log\eps^{-1})$-approximate top eigenvector, and is based on a simple iterative filtering approach. Our second, which attains a slightly worse approximation factor, runs in nearly-linear time and sample complexity under a mild spectral gap assumption. These are the first polynomial-time algorithms yielding non-trivial information about the covariance of a corrupted sub-Gaussian distribution without requiring additional algebraic structure of moments. As a key technical tool, we develop the first width-independent solvers for Schatten-$p$ norm packing semidefinite programs, giving a $(1 + \eps)$-approximate solution in $O(p\log(\tfrac{nd}{\eps})\eps^{-1})$ input-sparsity time iterations (where $n$, $d$ are problem dimensions).
Author Information
Arun Jambulapati (Stanford University)
Jerry Li (Microsoft)
Kevin Tian (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Robust Sub-Gaussian Principal Component Analysis and Width-Independent Schatten Packing »
Wed. Dec 9th 03:50 -- 04:00 AM Room Orals & Spotlights: Deep Learning/Theory
More from the Same Authors
-
2021 Spotlight: List-Decodable Mean Estimation in Nearly-PCA Time »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard · Jerry Li · Kevin Tian -
2022 : Semi-Random Sparse Recovery in Nearly-Linear Time »
Jonathan Kelner · Jerry Li · Allen Liu · Aaron Sidford · Kevin Tian -
2022 : Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions »
Sitan Chen · Sinho Chewi · Jerry Li · Yuanzhi Li · Adil Salim · Anru Zhang -
2022 : REAP: A Large-Scale Realistic Adversarial Patch Benchmark »
Nabeel Hingun · Chawin Sitawarin · Jerry Li · David Wagner -
2022 Poster: Robust Model Selection and Nearly-Proper Learning for GMMs »
Allen Liu · Jerry Li · Ankur Moitra -
2022 Poster: Learning (Very) Simple Generative Models Is Hard »
Sitan Chen · Jerry Li · Yuanzhi Li -
2021 Poster: Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions »
Yin Tat Lee · Ruoqi Shen · Kevin Tian -
2021 Poster: Stochastic Bias-Reduced Gradient Methods »
Hilal Asi · Yair Carmon · Arun Jambulapati · Yujia Jin · Aaron Sidford -
2021 Poster: Robust Regression Revisited: Acceleration and Improved Estimation Rates »
Arun Jambulapati · Jerry Li · Tselil Schramm · Kevin Tian -
2021 Poster: List-Decodable Mean Estimation in Nearly-PCA Time »
Ilias Diakonikolas · Daniel Kane · Daniel Kongsgaard · Jerry Li · Kevin Tian -
2021 Oral: Lower Bounds on Metropolized Sampling Methods for Well-Conditioned Distributions »
Yin Tat Lee · Ruoqi Shen · Kevin Tian -
2020 Poster: Acceleration with a Ball Optimization Oracle »
Yair Carmon · Arun Jambulapati · Qijia Jiang · Yujia Jin · Yin Tat Lee · Aaron Sidford · Kevin Tian -
2020 Oral: Acceleration with a Ball Optimization Oracle »
Yair Carmon · Arun Jambulapati · Qijia Jiang · Yujia Jin · Yin Tat Lee · Aaron Sidford · Kevin Tian -
2020 Poster: Robust Gaussian Covariance Estimation in Nearly-Matrix Multiplication Time »
Jerry Li · Guanghao Ye -
2020 Poster: Robust and Heavy-Tailed Mean Estimation Made Simple, via Regret Minimization »
Sam Hopkins · Jerry Li · Fred Zhang -
2020 Poster: Learning Structured Distributions From Untrusted Batches: Faster and Simpler »
Sitan Chen · Jerry Li · Ankur Moitra -
2019 Poster: Variance Reduction for Matrix Games »
Yair Carmon · Yujia Jin · Aaron Sidford · Kevin Tian -
2019 Poster: Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers »
Hadi Salman · Jerry Li · Ilya Razenshteyn · Pengchuan Zhang · Huan Zhang · Sebastien Bubeck · Greg Yang -
2019 Spotlight: Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers »
Hadi Salman · Jerry Li · Ilya Razenshteyn · Pengchuan Zhang · Huan Zhang · Sebastien Bubeck · Greg Yang -
2019 Oral: Variance Reduction for Matrix Games »
Yair Carmon · Yujia Jin · Aaron Sidford · Kevin Tian -
2019 Poster: A Direct tilde{O}(1/epsilon) Iteration Parallel Algorithm for Optimal Transport »
Arun Jambulapati · Aaron Sidford · Kevin Tian -
2019 Poster: Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection »
Yihe Dong · Samuel Hopkins · Jerry Li -
2019 Spotlight: Quantum Entropy Scoring for Fast Robust Mean Estimation and Improved Outlier Detection »
Yihe Dong · Samuel Hopkins · Jerry Li -
2017 Poster: Learning Populations of Parameters »
Kevin Tian · Weihao Kong · Gregory Valiant