`

Timezone: »

 
Spotlight
Robust Sub-Gaussian Principal Component Analysis and Width-Independent Schatten Packing
Arun Jambulapati · Jerry Li · Kevin Tian

Tue Dec 08 07:50 PM -- 08:00 PM (PST) @ Orals & Spotlights: Deep Learning/Theory
We develop two methods for the following fundamental statistical task: given an $\eps$-corrupted set of $n$ samples from a $d$-dimensional sub-Gaussian distribution, return an approximate top eigenvector of the covariance matrix. Our first robust PCA algorithm runs in polynomial time, returns a $1 - O(\eps\log\eps^{-1})$-approximate top eigenvector, and is based on a simple iterative filtering approach. Our second, which attains a slightly worse approximation factor, runs in nearly-linear time and sample complexity under a mild spectral gap assumption. These are the first polynomial-time algorithms yielding non-trivial information about the covariance of a corrupted sub-Gaussian distribution without requiring additional algebraic structure of moments. As a key technical tool, we develop the first width-independent solvers for Schatten-$p$ norm packing semidefinite programs, giving a $(1 + \eps)$-approximate solution in $O(p\log(\tfrac{nd}{\eps})\eps^{-1})$ input-sparsity time iterations (where $n$, $d$ are problem dimensions).

Author Information

Arun Jambulapati (Stanford University)
Jerry Li (Microsoft)
Kevin Tian (Stanford University)

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors