`

Timezone: »

 
Poster
Learning abstract structure for drawing by efficient motor program induction
Lucas Tian · Kevin Ellis · Marta Kryven · Josh Tenenbaum

Thu Dec 10 09:00 AM -- 11:00 AM (PST) @ Poster Session 5 #1682

Humans flexibly solve new problems that differ from those previously practiced. This ability to flexibly generalize is supported by learned concepts that represent useful structure common across different problems. Here we develop a naturalistic drawing task to study how humans rapidly acquire structured prior knowledge. The task requires drawing visual figures that share underlying structure, based on a set of composable geometric rules and simple objects. We show that people spontaneously learn abstract drawing procedures that support generalization, and propose a model of how learners can discover these reusable drawing procedures. Trained in the same setting as humans, and constrained to produce efficient motor actions, this model discovers new drawing program subroutines that generalize to test figures and resemble learned features of human behavior. These results suggest that two principles guiding motor program induction in the model - abstraction (programs can reflect high-level structure that ignores figure-specific details) and compositionality (new programs are discovered by recombining previously learned programs) - are key for explaining how humans learn structured internal representations that guide flexible reasoning and learning.

Author Information

Lucas Tian (MIT)
Kevin Ellis (MIT)
Marta Kryven (Massachusetts Institute of Technology)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors