Timezone: »
We propose a novel approach that integrates machine learning into compartmental disease modeling (e.g., SEIR) to predict the progression of COVID-19. Our model is explainable by design as it explicitly shows how different compartments evolve and it uses interpretable encoders to incorporate covariates and improve performance. Explainability is valuable to ensure that the model's forecasts are credible to epidemiologists and to instill confidence in end-users such as policy makers and healthcare institutions. Our model can be applied at different geographic resolutions, and we demonstrate it for states and counties in the United States. We show that our model provides more accurate forecasts compared to the alternatives, and that it provides qualitatively meaningful explanatory insights.
Author Information
Sercan Arik (Google)
Chun-Liang Li (Google)
Jinsung Yoon (Google)
Rajarishi Sinha (Google)
Arkady Epshteyn (Google)
Long Le (Google)
Vikas Menon (Google)
Shashank Singh (CMU/Google)
Leyou Zhang (Google)
Martin Nikoltchev (Google)
Yash Sonthalia (Google)
Hootan Nakhost (Google)
Elli Kanal (Google)
Tomas Pfister (Google)
Related Events (a corresponding poster, oral, or spotlight)
-
2020 Spotlight: Interpretable Sequence Learning for Covid-19 Forecasting »
Tue Dec 8th 03:20 -- 03:30 AM Room Orals & Spotlights: COVID/Health/Bio Applications
More from the Same Authors
-
2020 Poster: FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence »
Kihyuk Sohn · David Berthelot · Nicholas Carlini · Zizhao Zhang · Han Zhang · Colin A Raffel · Ekin Dogus Cubuk · Alexey Kurakin · Chun-Liang Li -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Poster: On Completeness-aware Concept-Based Explanations in Deep Neural Networks »
Chih-Kuan Yeh · Been Kim · Sercan Arik · Chun-Liang Li · Tomas Pfister · Pradeep Ravikumar -
2020 Poster: Robust Density Estimation under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2020 Spotlight: Robust Density Estimation under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2019 Poster: Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2019 Oral: Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses »
Ananya Uppal · Shashank Singh · Barnabas Poczos -
2018 Poster: Nonparametric Density Estimation under Adversarial Losses »
Shashank Singh · Ananya Uppal · Boyue Li · Chun-Liang Li · Manzil Zaheer · Barnabas Poczos -
2016 Poster: Finite-Sample Analysis of Fixed-k Nearest Neighbor Density Functional Estimators »
Shashank Singh · Barnabas Poczos -
2016 Poster: Efficient Nonparametric Smoothness Estimation »
Shashank Singh · Simon Du · Barnabas Poczos -
2014 Poster: Exponential Concentration of a Density Functional Estimator »
Shashank Singh · Barnabas Poczos