Timezone: »
Invited Talk: Danielle Belgrave - Machine Learning for Personalised Healthcare: Why is it not better?
Danielle Belgrave
Sat Dec 12 05:30 AM -- 06:00 AM (PST) @
This talk presents an overview of probabilistic graphical modelling as a strategy for understanding heterogeneous subgroups of patients. The identification of such subgroups may elucidate underlying causal mechanisms which may lead to more targeted treatment and intervention strategies. We will look at (1) the ideal of personalisation within the context of machine learning for healthcare (2) “From the ideal to the reality” and (3) some of the possible pathways to progress for making the ideal of personalised healthcare to reality. The last part of this talk focuses on the pipeline of personalisation and looks at probabilistic graphical models are part of a pipeline.
Author Information
Danielle Belgrave (Microsoft Research)
More from the Same Authors
-
2022 : Advancing the participatory approach to AI in Mental Health »
Wilson Lee · Munmun De Choudhury · Morgan Scheuerman · Julia Hamer-Hunt · Dan Joyce · Nenad Tomasev · Kevin McKee · Shakir Mohamed · Danielle Belgrave · Christopher Burr -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Workshop: Machine Learning for Health (ML4H): Advancing Healthcare for All »
Stephanie Hyland · Allen Schmaltz · Charles Onu · Ehi Nosakhare · Emily Alsentzer · Irene Y Chen · Matthew McDermott · Subhrajit Roy · Benjamin Akera · Dani Kiyasseh · Fabian Falck · Griffin Adams · Ioana Bica · Oliver J Bear Don't Walk IV · Suproteem Sarkar · Stephen Pfohl · Andrew Beam · Brett Beaulieu-Jones · Danielle Belgrave · Tristan Naumann -
2020 : Remarks from the WiML 2020 Diversity & Inclusion Chairs »
Danielle Belgrave · Meire Fortunato