Timezone: »
In this talk, I will cover recent results in two areas: 1) Using quantum-inspired methods in machine learning, including using low-entanglement states (matrix product states/tensor train decompositions) for different regression and classification tasks. 2) Using machine learning methods for efficient classical simulation of quantum systems. I will cover our results on simulating quantum circuits on parallel computers using graph-based algorithms, and also efficient numerical methods for optimization using tensor-trains for the computational of large number (up to B=100) on GPUs. The code is a combination of classical linear algebra algorithms, Riemannian optimization methods and efficient software implementation in TensorFlow.
- Rakhuba, M., Novikov, A. and Oseledets, I., 2019. Low-rank Riemannian eigensolver for high-dimensional Hamiltonians. Journal of Computational Physics, 396, pp.718-737.
- Schutski, Roman, Danil Lykov, and Ivan Oseledets. Adaptive algorithm for quantum circuit simulation. Physical Review A 101, no. 4 (2020): 042335.
- Khakhulin, Taras, Roman Schutski, and Ivan Oseledets. Graph Convolutional Policy for Solving Tree Decomposition via Reinforcement Learning Heuristics. arXiv preprint arXiv:1910.08371 (2019).
Author Information
Ivan Oseledets (Skoltech)
More from the Same Authors
-
2022 Poster: TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning »
Konstantin Sozykin · Andrei Chertkov · Roman Schutski · Anh-Huy Phan · Andrzej S CICHOCKI · Ivan Oseledets -
2022 Poster: Smoothed Embeddings for Certified Few-Shot Learning »
Mikhail Pautov · Olesya Kuznetsova · Nurislam Tursynbek · Aleksandr Petiushko · Ivan Oseledets -
2021 Workshop: Second Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Ivan Oseledets · Yufei Ding · Guillaume Rabusseau · Jean Kossaifi · Khadijeh Najafi · Anwar Walid · Andrzej Cichocki · Masashi Sugiyama -
2020 : Panel Discussion 1: Theoretical, Algorithmic and Physical »
Jacob Biamonte · Ivan Oseledets · Jens Eisert · Nadav Cohen · Guillaume Rabusseau · Xiao-Yang Liu -
2020 : Invited Talk 4 Q&A by Ivan »
Ivan Oseledets -
2020 Poster: Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs »
Talgat Daulbaev · Alexandr Katrutsa · Larisa Markeeva · Julia Gusak · Andrzej Cichocki · Ivan Oseledets -
2018 Poster: Quadrature-based features for kernel approximation »
Marina Munkhoeva · Yermek Kapushev · Evgeny Burnaev · Ivan Oseledets -
2018 Spotlight: Quadrature-based features for kernel approximation »
Marina Munkhoeva · Yermek Kapushev · Evgeny Burnaev · Ivan Oseledets