Timezone: »
In this talk, I will present uniform tensor network models (also known translation invariant tensor networks) which are particularly suited for modelling structured data such as sequences and trees. Uniform tensor networks are tensor networks where the core tensors appearing in the decomposition of a given tensor are all equal, which can be seen as a weight sharing mechanism in tensor networks. In the first part of the talk, I will show how uniform tensor networks are particularly suited to represent functions defined over sets of structured objects such as sequences and trees. I will then present how these models are related to classical computational models such as hidden Markov models, weighted automata, second-order recurrent neural networks and context free grammars. In the second part of the talk, I will present a classical learning algorithm for weighted automata and show how and it can be interpreted as a mean to convert non-uniform tensor networks to uniform ones. Lastly, I will present ongoing work leveraging the tensor network formalism to design efficient and versatile probabilistic models for sequence data.
Author Information
Guillaume Rabusseau (Université de Montréal - Mila)
More from the Same Authors
-
2021 Spotlight: Lower and Upper Bounds on the Pseudo-Dimension of Tensor Network Models »
Behnoush Khavari · Guillaume Rabusseau -
2021 : Few Shot Image Generation via Implicit Autoencoding of Support Sets »
Shenyang Huang · Kuan-Chieh Wang · Guillaume Rabusseau · Alireza Makhzani -
2021 Poster: Lower and Upper Bounds on the Pseudo-Dimension of Tensor Network Models »
Behnoush Khavari · Guillaume Rabusseau -
2020 : Invited Talk 9 Q&A by Guillaume »
Guillaume Rabusseau -
2020 : Panel Discussion 1: Theoretical, Algorithmic and Physical »
Jacob Biamonte · Ivan Oseledets · Jens Eisert · Nadav Cohen · Guillaume Rabusseau · Xiao-Yang Liu -
2017 Poster: Hierarchical Methods of Moments »
Matteo Ruffini · Guillaume Rabusseau · Borja Balle -
2017 Poster: Multitask Spectral Learning of Weighted Automata »
Guillaume Rabusseau · Borja Balle · Joelle Pineau -
2016 Poster: Low-Rank Regression with Tensor Responses »
Guillaume Rabusseau · Hachem Kadri