Timezone: »
Muslims In ML (MusIML) is an affinity workshop for the NeurIPS community.
We focus on both the potential for advancement and harm to Muslims and those in Muslim-majority countries who religiously identify, culturally associate, or are classified by proximity, as “Muslim”.
The workshop will run on Tuesday, December 8, 2020 from 10:30AM - 1:30PM EST.
We will feature a combination of pre-recorded and live talks, followed by a panel discussion with authors on the intersection of policy, technology, and Muslim communities.
Tue 7:30 a.m. - 7:35 a.m.
|
Welcome
(
Live Intro
)
|
Marzyeh Ghassemi 🔗 |
Tue 7:35 a.m. - 8:00 a.m.
|
Investigating Anti-Muslim Bias in GPT-3 through Words, Images, & Stories
(
Invited Talk
)
|
Abubakar Abid 🔗 |
Tue 8:02 a.m. - 8:25 a.m.
|
Taking from the Hands that Give: CRA audits of Muslim-led Charities
(
Invited Talk
)
|
Anver Emon 🔗 |
Tue 8:26 a.m. - 8:50 a.m.
|
Automatically Identifying Islamophobia in Social Media
(
Invited Talk
)
SlidesLive Video » Social media continues to grow in its scope, importance, and toxicity. Hate speech is ever-present in today’s social media, and causes or contributes to dangerous situations in the real world for those it targets. Anti-Muslim bias and hatred has escalated in both public life and social media in recent years. This talk will overview a new and ongoing project in identifying Islamophobia in social media using techniques from Natural Language Processing. I will describe our methods of data collection and annotation, and discuss some of the challenges we have encountered thus far. In addition I’ll describe some of the pitfalls that exist for any effort attempting to identify hate speech (automatically or not). |
Ted Pedersen 🔗 |
Tue 8:51 a.m. - 9:15 a.m.
|
The Digital Enclosure of Turkic Muslims in Northwest China
(
Invited Talk
)
SlidesLive Video » In this short talk I use the conceptual framing of a digital enclosure to consider the way Uyghur and Kazakh societies in Northwest China have been enveloped by a surveillance system over the past decade. I show how novel enclosures are produced and, in turn, construct new frontiers in capital accumulation and state power. The Turkic Muslim digital enclosure system began with the construction of 3-G cellular wireless networks which provided Uyghurs and Kazakhs with interactive smart-phone enabled capabilities across time and space. But over time state authorities paid private technology companies to build a data-intensive system with a wide range of spatial scales and information analytics that came to center on "Muslim" social media assessment and ethno-racialized face recognition technology. This complex matrix of overlaid enclosures assessed and controlled the movements and behavior of Muslims in increasingly intimate ways, resulting in mass detentions in "reeducation" camps. What makes the case in Northwest China unique beyond its scale and cruelty, is that in this context rather than banishing targeted populations solely to human warehousing spaces such as peripheral ghettos, camps or prisons, the digital enclosure works to explicitly “reeducate” the population as industrial workers and implement a forced labor regime. |
Darren Byler 🔗 |
Tue 9:16 a.m. - 9:30 a.m.
|
Creating Multilingual Corpora for Arabic Characterset
(
Invited Talk
)
|
Nayel Shafei 🔗 |
Tue 9:30 a.m. - 9:45 a.m.
|
Data Paucity and Low Resource Scenarios: Challenges and Opportunities
(
Invited Talk
)
In an era unstructured data abundance, you would think that we have solved our data requirements for building robust systems for language processing. However, this is not the case if we think on a global scale with over 7000 languages where only a handful have digital resources. Moreover, systems at scale with good performance typically require annotated resources.The existence of a handful of resources in a some languages is a reflection of the digital disparity in various societies leading to inadvertent biases in systems. In this talk I will show some solutions for low resource scenarios, both cross domain and genres as well as cross lingually. |
Mona Diab 🔗 |
Tue 9:45 a.m. - 10:00 a.m.
|
NLU Meets Islamic Religious Phrases: Highlighting the Challenges
(
Invited Talk
)
|
Samhaa R. El-Beltagy 🔗 |
Tue 10:00 a.m. - 10:30 a.m.
|
Policy Panel
(
Discussion Panel
)
In this short talk, Roya Pakzad will speak about her current project entitled "Nuanced Counter-Narratives of Being Muslim Online." The goal of this project is to gain a deeper understanding of how marginalized groups create counter-narratives, who amplifies them, how sustainable they are, and how their impact differs. By providing various examples, she will also touch on how technology companies' business models and their third-party relationships impact Muslims and people from Muslim-majority countries. The talk will conclude with recommendations for design and policy interventions. The workshop will conclude with a discussion with authors and organizers. |
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab
|
Author Information
Marzyeh Ghassemi (University of Toronto / Vector Institute)
Mohammad Norouzi (Google Brain)
Shakir Mohamed (DeepMind)

Shakir Mohamed is a senior staff scientist at DeepMind in London. Shakir's main interests lie at the intersection of approximate Bayesian inference, deep learning and reinforcement learning, and the role that machine learning systems at this intersection have in the development of more intelligent and general-purpose learning systems. Before moving to London, Shakir held a Junior Research Fellowship from the Canadian Institute for Advanced Research (CIFAR), based in Vancouver at the University of British Columbia with Nando de Freitas. Shakir completed his PhD with Zoubin Ghahramani at the University of Cambridge, where he was a Commonwealth Scholar to the United Kingdom. Shakir is from South Africa and completed his previous degrees in Electrical and Information Engineering at the University of the Witwatersrand, Johannesburg.
Aya Salama (Aigorithm Tech)
Tasmie Sarker (University of Toronto)
More from the Same Authors
-
2021 : Palette: Image-to-Image Diffusion Models »
Chitwan Saharia · William Chan · Huiwen Chang · Chris Lee · Jonathan Ho · Tim Salimans · David Fleet · Mohammad Norouzi -
2021 : Palette: Image-to-Image Diffusion Models »
Chitwan Saharia · William Chan · Huiwen Chang · Chris Lee · Jonathan Ho · Tim Salimans · David Fleet · Mohammad Norouzi -
2022 : Multimodal Checklists for Fair Clinical Decision Support »
Qixuan Jin · Marzyeh Ghassemi -
2022 : Fair Active learning by exploiting causal data structure »
Sindhu C M Gowda · Haoran Zhang · Marzyeh Ghassemi -
2022 : Advancing the participatory approach to AI in Mental Health »
Wilson Lee · Munmun De Choudhury · Morgan Scheuerman · Julia Hamer-Hunt · Dan Joyce · Nenad Tomasev · Kevin McKee · Shakir Mohamed · Danielle Belgrave · Christopher Burr -
2022 : Invited Talk: Mohammad Norouzi »
Mohammad Norouzi -
2022 : Interactive Industrial Panel »
Jiahao Sun · Ahmed Ibrahim · Marjan Ghazvininejad · Yu Cheng · Boxing Chen · Mohammad Norouzi · Rahul Gupta -
2021 : Data Opportunities: unsolved medical problems and where new data can help »
Bin Yu · Regina Barzilay · Marzyeh Ghassemi · Emma Pierson -
2021 : Invited Talk Q&A »
Stephanie Sy · Aya Salama -
2021 Workshop: Machine learning from ground truth: New medical imaging datasets for unsolved medical problems. »
Katy Haynes · Ziad Obermeyer · Emma Pierson · Marzyeh Ghassemi · Matthew Lungren · Sendhil Mullainathan · Matthew McDermott -
2021 Workshop: Machine Learning for the Developing World (ML4D): Global Challenges »
Paula Rodriguez Diaz · Konstantin Klemmer · Sally Simone Fobi · Oluwafemi Azeez · Niveditha Kalavakonda · Aya Salama · Tejumade Afonja -
2021 Poster: Why Do Better Loss Functions Lead to Less Transferable Features? »
Simon Kornblith · Ting Chen · Honglak Lee · Mohammad Norouzi -
2020 : Best Paper / Poster Announcement »
Aya Salama -
2020 : Panel Discussions »
Grace Lindsay · George Konidaris · Shakir Mohamed · Kimberly Stachenfeld · Peter Dayan · Yael Niv · Doina Precup · Catherine Hartley · Ishita Dasgupta -
2020 : Introduction of Invited Talk 3 »
Aya Salama -
2020 : Invited talk 1 QnA: Shakir Mohamed »
Shakir Mohamed · Feryal Behbahani · Raymond Chua -
2020 : Invited Talk #1 Shakir Mohamed : Pain and Machine Learning »
Shakir Mohamed -
2020 Workshop: Machine Learning for the Developing World (ML4D): Improving Resilience »
Tejumade Afonja · Konstantin Klemmer · Niveditha Kalavakonda · Oluwafemi Azeez · Aya Salama · Paula Rodriguez Diaz -
2020 : Q&A with Shakir »
Shakir Mohamed -
2020 : Invited: Shakir Mohamed »
Shakir Mohamed -
2020 : Policy Panel »
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab -
2019 Poster: Training Language GANs from Scratch »
Cyprien de Masson d'Autume · Shakir Mohamed · Mihaela Rosca · Jack Rae -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2018 Poster: Implicit Reparameterization Gradients »
Mikhail Figurnov · Shakir Mohamed · Andriy Mnih -
2018 Spotlight: Implicit Reparameterization Gradients »
Mikhail Figurnov · Shakir Mohamed · Andriy Mnih -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Bridging the Gap Between Value and Policy Based Reinforcement Learning »
Ofir Nachum · Mohammad Norouzi · Kelvin Xu · Dale Schuurmans -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 : Bayesian Agents: Bayesian Reasoning and Deep Learning in Agent-based Systems »
Shakir Mohamed -
2016 Workshop: Machine Learning for Health »
Uri Shalit · Marzyeh Ghassemi · Jason Fries · Rajesh Ranganath · Theofanis Karaletsos · David Kale · Peter Schulam · Madalina Fiterau -
2016 Poster: Unsupervised Learning of 3D Structure from Images »
Danilo Jimenez Rezende · S. M. Ali Eslami · Shakir Mohamed · Peter Battaglia · Max Jaderberg · Nicolas Heess -
2016 Tutorial: Variational Inference: Foundations and Modern Methods »
David Blei · Shakir Mohamed · Rajesh Ranganath -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning »
Shakir Mohamed · Danilo Jimenez Rezende -
2014 Workshop: Advances in Variational Inference »
David Blei · Shakir Mohamed · Michael Jordan · Charles Blundell · Tamara Broderick · Matthew D. Hoffman -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2012 Workshop: Bayesian Optimization and Decision Making »
Javad Azimi · Roman Garnett · Frank R Hutter · Shakir Mohamed -
2012 Poster: Expectation Propagation in Gaussian Process Dynamical Systems »
Marc Deisenroth · Shakir Mohamed -
2012 Poster: Fast Bayesian Inference for Non-Conjugate Gaussian Process Regression »
Mohammad Emtiyaz Khan · Shakir Mohamed · Kevin Murphy -
2009 Poster: Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process »
Shakir Mohamed · David A Knowles · Zoubin Ghahramani · Finale P Doshi-Velez -
2008 Poster: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani -
2008 Spotlight: Bayesian Exponential Family PCA »
Shakir Mohamed · Katherine Heller · Zoubin Ghahramani