Timezone: »
Isometric Gaussian Process Latent Variable Model
Martin Jørgensen · Søren Hauberg
We propose a fully generative unsupervised model where the latent variable respects both the distances and the topology of the modeled data. The model leverages the Riemannian geometry of the generated manifold to endow the latent space with a well-defined stochastic distance measure, which is modeled as Nakagami distributions. These stochastic distances are sought to be as similar as possible to observed distances along a neighborhood graph through a censoring process. The model is inferred by variational inference. We demonstrate how the new model can encode invariances in the learned manifolds.
Author Information
Martin Jørgensen (Technical University of Denmark)
Søren Hauberg (Technical University of Denmark)
More from the Same Authors
-
2021 : A kernel for continuously relaxed, discrete Bayesian optimization of protein sequences »
Yevgen Zainchkovskyy · Simon Bartels · Søren Hauberg · Jes Frellsen · Wouter Boomsma -
2021 Meetup: Copenhagen, Denmark »
Søren Hauberg -
2022 : Probabilistic thermal stability prediction through sparsity promoting transformer representation »
Yevgen Zainchkovskyy · Jesper Ferkinghoff-Borg · Anja Bennett · Thomas Egebjerg · Nikolai Lorenzen · Per Greisen · Søren Hauberg · Carsten Stahlhut -
2022 : Optimal Latent Transport »
Hrittik Roy · Søren Hauberg -
2022 : Identifying latent distances with Finslerian geometry »
Alison Pouplin · David Eklund · Carl Henrik Ek · Søren Hauberg -
2022 Poster: Revisiting Active Sets for Gaussian Process Decoders »
Pablo Moreno-Muñoz · Cilie Feldager · Søren Hauberg -
2022 Poster: Laplacian Autoencoders for Learning Stochastic Representations »
Marco Miani · Frederik Warburg · Pablo Moreno-Muñoz · Nicki Skafte · Søren Hauberg -
2021 Poster: Bounds all around: training energy-based models with bidirectional bounds »
Cong Geng · Jia Wang · Zhiyong Gao · Jes Frellsen · Søren Hauberg -
2020 : Invited Talk 3: Reparametrization invariance in representation learning »
Søren Hauberg -
2019 Poster: Reliable training and estimation of variance networks »
Nicki Skafte · Martin Jørgensen · Søren Hauberg -
2019 Poster: Explicit Disentanglement of Appearance and Perspective in Generative Models »
Nicki Skafte · Søren Hauberg -
2016 Poster: A Locally Adaptive Normal Distribution »
Georgios Arvanitidis · Lars K Hansen · Søren Hauberg