Timezone: »
In recent years there has been substantial progress in few-shot learning, where a model is trained on a small labeled dataset related to a specific task, and in continual learning, where a model has to retain knowledge acquired on a sequence of datasets. However, the field has still to frame a suite of benchmarks for the hybrid setting combining these two paradigms, where a model is trained on several sequential few-shot tasks, and then tested on a validation set stemming from all those tasks. In this paper we propose such a setting, naming it Continual Few-Shot Learning (CFSL). We first define a theoretical framework for CFSL, then we propose a range of flexible benchmarks to unify the evaluation criteria. As part of the benchmark, we introduce a compact variant of ImageNet, called SlimageNet64, which retains all original 1000 classes but only contains 200 instances of each one (a total of 200K data-points) downscaled to 64 by 64 pixels. We provide baselines for the proposed benchmarks using a number of popular few-shot and continual learning methods, exposing previously unknown strengths and weaknesses of those algorithms. The dataloader and dataset will be released with an open-source license.
Author Information
Massimiliano Patacchiola (University of Edinburgh)
Massimiliano is a postdoctoral researcher at the University of Cambridge in the Machine Learning Group. He is interested in efficient learning (few-shot, self-supervised, meta-learning), Bayesian methods (Gaussian processes), and reinforcement learning. Previously he has been a postdoctoral researcher at the University of Edinburgh and an intern in the Camera Platform team at Snapchat.
More from the Same Authors
-
2021 Poster: Memory Efficient Meta-Learning with Large Images »
John Bronskill · Daniela Massiceti · Massimiliano Patacchiola · Katja Hofmann · Sebastian Nowozin · Richard Turner -
2021 Poster: Non-Gaussian Gaussian Processes for Few-Shot Regression »
Marcin Sendera · Jacek Tabor · Aleksandra Nowak · Andrzej Bedychaj · Massimiliano Patacchiola · Tomasz Trzcinski · Przemysław Spurek · Maciej Zieba -
2020 Poster: Self-Supervised Relational Reasoning for Representation Learning »
Massimiliano Patacchiola · Amos Storkey -
2020 Spotlight: Self-Supervised Relational Reasoning for Representation Learning »
Massimiliano Patacchiola · Amos Storkey -
2020 Poster: Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels »
Massimiliano Patacchiola · Jack Turner · Elliot Crowley · Michael O'Boyle · Amos Storkey -
2020 Spotlight: Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels »
Massimiliano Patacchiola · Jack Turner · Elliot Crowley · Michael O'Boyle · Amos Storkey