Timezone: »

 
Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time
Ferran Alet

From CNNs to attention mechanisms, encoding inductive biases into neural networks has been a fruitful source of improvement in machine learning. Auxiliary losses are a general way of encoding biases in order to help networks learn better representations by adding extra terms to the loss function. However, since they are minimized on the training data, they suffer from the same generalization gap as regular task losses. Moreover, by changing the loss function, the network is optimizing a different objective than the one we care about. In this work we solve both problems: first, we take inspiration from transductive learning and note that, after receiving an input but before making a prediction, we can fine-tune our models on any unsupervised objective. We call this process tailoring, because we customize the model to each input. Second, we formulate a nested optimization (similar to those in meta-learning) and train our models to perform well on the task loss after adapting to the tailoring loss. The advantages of tailoring and meta-tailoring are discussed theoretically and demonstrated empirically on several diverse examples: encoding inductive conservation laws from physics to improve predictions, improving local smoothness to increase robustness to adversarial examples, and using contrastive losses on the query image to improve generalization.

Author Information

Ferran Alet (MIT)

More from the Same Authors

  • 2020 : Measuring few-shot extrapolation with program induction »
    Ferran Alet
  • 2020 : Robotic gripper design with Evolutionary Strategies and Graph Element Networks »
    Ferran Alet · Maria Bauza · Adarsh K Jeewajee · Max Thomsen · Alberto Rodriguez · Leslie Kaelbling · Tomás Lozano-Pérez
  • 2021 : Noether Networks: Meta-Learning Useful Conserved Quantities »
    Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn
  • 2021 Poster: Noether Networks: meta-learning useful conserved quantities »
    Ferran Alet · Dylan Doblar · Allan Zhou · Josh Tenenbaum · Kenji Kawaguchi · Chelsea Finn
  • 2021 Poster: Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time »
    Ferran Alet · Maria Bauza · Kenji Kawaguchi · Nurullah Giray Kuru · Tomás Lozano-Pérez · Leslie Kaelbling
  • 2020 : Spotlight Session 2 »
    Augustus Odena · Kensen Shi · David Bieber · Ferran Alet · Charles Sutton · Roshni Iyer
  • 2020 : Ferran Alet - Tailoring: encoding inductive biases by optimizing unsupervised objectives at prediction time »
    Ferran Alet
  • 2019 : Poster Session »
    Matthia Sabatelli · Adam Stooke · Amir Abdi · Paulo Rauber · Leonard Adolphs · Ian Osband · Hardik Meisheri · Karol Kurach · Johannes Ackermann · Matt Benatan · GUO ZHANG · Chen Tessler · Dinghan Shen · Mikayel Samvelyan · Riashat Islam · Murtaza Dalal · Luke Harries · Andrey Kurenkov · Konrad Żołna · Sudeep Dasari · Kristian Hartikainen · Ofir Nachum · Kimin Lee · Markus Holzleitner · Vu Nguyen · Francis Song · Christopher Grimm · Felipe Leno da Silva · Yuping Luo · Yifan Wu · Alex Lee · Thomas Paine · Wei-Yang Qu · Daniel Graves · Yannis Flet-Berliac · Yunhao Tang · Suraj Nair · Matthew Hausknecht · Akhil Bagaria · Simon Schmitt · Bowen Baker · Paavo Parmas · Benjamin Eysenbach · Lisa Lee · Siyu Lin · Daniel Seita · Abhishek Gupta · Riley Simmons-Edler · Yijie Guo · Kevin Corder · Vikash Kumar · Scott Fujimoto · Adam Lerer · Ignasi Clavera Gilaberte · Nicholas Rhinehart · Ashvin Nair · Ge Yang · Lingxiao Wang · Sungryull Sohn · J. Fernando Hernandez-Garcia · Xian Yeow Lee · Rupesh Srivastava · Khimya Khetarpal · Chenjun Xiao · Luckeciano Carvalho Melo · Rishabh Agarwal · Tianhe Yu · Glen Berseth · Devendra Singh Chaplot · Jie Tang · Anirudh Srinivasan · Tharun Kumar Reddy Medini · Aaron Havens · Misha Laskin · Asier Mujika · Rohan Saphal · Joseph Marino · Alex Ray · Joshua Achiam · Ajay Mandlekar · Zhuang Liu · Danijar Hafner · Zhiwen Tang · Ted Xiao · Michael Walton · Jeff Druce · Ferran Alet · Zhang-Wei Hong · Stephanie Chan · Anusha Nagabandi · Hao Liu · Hao Sun · Ge Liu · Dinesh Jayaraman · John Co-Reyes · Sophia Sanborn
  • 2019 : Coffee/Poster session 2 »
    Xingyou Song · Puneet Mangla · David Salinas · Zhenxun Zhuang · Leo Feng · Shell Xu Hu · Raul Puri · Wesley Maddox · Aniruddh Raghu · Prudencio Tossou · Mingzhang Yin · Ishita Dasgupta · Kangwook Lee · Ferran Alet · Zhen Xu · Jörg Franke · James Harrison · Jonathan Warrell · Guneet Dhillon · Arber Zela · Xin Qiu · Julien Niklas Siems · Russell Mendonca · Louis Schlessinger · Jeffrey Li · Georgiana Manolache · Debojyoti Dutta · Lucas Glass · Abhishek Singh · Gregor Koehler
  • 2019 Poster: Neural Relational Inference with Fast Modular Meta-learning »
    Ferran Alet · Erica Weng · Tomás Lozano-Pérez · Leslie Kaelbling