Timezone: »

 
Oral
Hogwild!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
Benjamin Recht · Christopher Ré · Stephen Wright · Feng Niu

Wed Dec 09 06:00 AM -- 06:15 AM (PST) @ Orals & Spotlights: Optimization

Stochastic Gradient Descent (SGD) is a popular algorithm that can achieve state-of-the-art performance on a variety of machine learning tasks. Several researchers have recently proposed schemes to parallelize SGD, but all require performance-destroying memory locking and synchronization. This work aims to show using novel theoretical analysis, algorithms, and implementation that SGD can be implemented without any locking. We present an update scheme called Hogwild which allows processors access to shared memory with the possibility of overwriting each other's work. We show that when the associated optimization problem is sparse, meaning most gradient updates only modify small parts of the decision variable, then Hogwild achieves a nearly optimal rate of convergence. We demonstrate experimentally that Hogwild outperforms alternative schemes that use locking by an order of magnitude.

Author Information

Benjamin Recht (UC Berkeley)
Christopher Ré (Stanford)
Stephen Wright (UW-Madison)

Steve Wright is a Professor of Computer Sciences at the University of Wisconsin-Madison. His research interests lie in computational optimization and its applications to science and engineering. Prior to joining UW-Madison in 2001, Wright was a Senior Computer Scientist (1997-2001) and Computer Scientist (1990-1997) at Argonne National Laboratory, and Professor of Computer Science at the University of Chicago (2000-2001). He is the past Chair of the Mathematical Optimization Society (formerly the Mathematical Programming Society), the leading professional society in optimization, and a member of the Board of the Society for Industrial and Applied Mathematics (SIAM). Wright is the author or co-author of four widely used books in numerical optimization, including "Primal Dual Interior-Point Methods" (SIAM, 1997) and "Numerical Optimization" (with J. Nocedal, Second Edition, Springer, 2006). He has also authored over 85 refereed journal papers on optimization theory, algorithms, software, and applications. He is coauthor of widely used interior-point software for linear and quadratic optimization. His recent research includes algorithms, applications, and theory for sparse optimization (including applications in compressed sensing and machine learning).

Feng Niu (MeasureMe)

More from the Same Authors