Timezone: »
In this paper, we introduce an efficient backpropagation scheme for non-constrained implicit functions. These functions are parametrized by a set of learnable weights and may optionally depend on some input; making them perfectly suitable as learnable layer in a neural network. We demonstrate our scheme on different applications: (i) neural ODEs with the implicit Euler method, and (ii) system identification in model predictive control.
Author Information
Andreas Look (Bosch Center for Artificial Intelligence)
Simona Doneva (University of Mannheim)
Melih Kandemir (Bosch Center for Artificial Intelligence (BCAI))
Rainer Gemulla (Universität Mannheim)
Jan Peters (TU Darmstadt & MPI Intelligent Systems)
Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science Department of the Technische Universitaet Darmstadt and at the same time a senior research scientist and group leader at the Max-Planck Institute for Intelligent Systems, where he heads the interdepartmental Robot Learning Group. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award, the Robotics: Science & Systems - Early Career Spotlight, the INNS Young Investigator Award, and the IEEE Robotics & Automation Society‘s Early Career Award as well as numerous best paper awards. In 2015, he was awarded an ERC Starting Grant. Jan Peters has studied Computer Science, Electrical, Mechanical and Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of Singapore (NUS) and the University of Southern California (USC). He has received four Master‘s degrees in these disciplines as well as a Computer Science PhD from USC.
More from the Same Authors
-
2020 : Learning Partially Known Stochastic Dynamics with Empirical PAC Bayes »
Manuel Haußmann · Sebastian Gerwinn · Andreas Look · Barbara Rakitsch · Melih Kandemir -
2022 : How crucial is Transformer in Decision Transformer? »
Max Siebenborn · Boris Belousov · Junning Huang · Jan Peters -
2022 : Conditioned Score-Based Models for Learning Collision-Free Trajectory Generation »
Joao Carvalho · Mark Baierl · Julen Urain · Jan Peters -
2022 Poster: Information-Theoretic Safe Exploration with Gaussian Processes »
Alessandro Bottero · Carlos Luis · Julia Vinogradska · Felix Berkenkamp · Jan Peters -
2020 Poster: Self-Paced Deep Reinforcement Learning »
Pascal Klink · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2020 Oral: Self-Paced Deep Reinforcement Learning »
Pascal Klink · Carlo D'Eramo · Jan Peters · Joni Pajarinen -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2018 Poster: Evidential Deep Learning to Quantify Classification Uncertainty »
Murat Sensoy · Lance Kaplan · Melih Kandemir -
2017 : Panel Discussion »
Matt Botvinick · Emma Brunskill · Marcos Campos · Jan Peters · Doina Precup · David Silver · Josh Tenenbaum · Roy Fox -
2017 : Hierarchical Imitation and Reinforcement Learning for Robotics (Jan Peters) »
Jan Peters -
2016 Poster: Catching heuristics are optimal control policies »
Boris Belousov · Gerhard Neumann · Constantin Rothkopf · Jan Peters -
2015 Poster: Model-Based Relative Entropy Stochastic Search »
Abbas Abdolmaleki · Rudolf Lioutikov · Jan Peters · Nuno Lau · Luis Pualo Reis · Gerhard Neumann -
2014 Demonstration: Learning for Tactile Manipulation »
Tucker Hermans · Filipe Veiga · Janine Hölscher · Herke van Hoof · Jan Peters -
2013 Workshop: Advances in Machine Learning for Sensorimotor Control »
Thomas Walsh · Alborz Geramifard · Marc Deisenroth · Jonathan How · Jan Peters -
2013 Workshop: Planning with Information Constraints for Control, Reinforcement Learning, Computational Neuroscience, Robotics and Games. »
Hilbert J Kappen · Naftali Tishby · Jan Peters · Evangelos Theodorou · David H Wolpert · Pedro Ortega -
2013 Poster: Probabilistic Movement Primitives »
Alexandros Paraschos · Christian Daniel · Jan Peters · Gerhard Neumann -
2012 Poster: Algorithms for Learning Markov Field Policies »
Abdeslam Boularias · Oliver Kroemer · Jan Peters -
2011 Poster: A Non-Parametric Approach to Dynamic Programming »
Oliver Kroemer · Jan Peters -
2011 Oral: A Non-Parametric Approach to Dynamic Programming »
Oliver Kroemer · Jan Peters -
2010 Spotlight: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Switched Latent Force Models for Movement Segmentation »
Mauricio A Alvarez · Jan Peters · Bernhard Schölkopf · Neil D Lawrence -
2010 Poster: Movement extraction by detecting dynamics switches and repetitions »
Silvia Chiappa · Jan Peters -
2009 Workshop: Probabilistic Approaches for Control and Robotics »
Marc Deisenroth · Hilbert J Kappen · Emo Todorov · Duy Nguyen-Tuong · Carl Edward Rasmussen · Jan Peters -
2008 Poster: Using Bayesian Dynamical Systems for Motion Template Libraries »
Silvia Chiappa · Jens Kober · Jan Peters -
2008 Poster: Fitted Q-iteration by Advantage Weighted Regression »
Gerhard Neumann · Jan Peters -
2008 Poster: Policy Search for Motor Primitives in Robotics »
Jens Kober · Jan Peters -
2008 Spotlight: Fitted Q-iteration by Advantage Weighted Regression »
Gerhard Neumann · Jan Peters -
2008 Oral: Policy Search for Motor Primitives in Robotics »
Jens Kober · Jan Peters -
2008 Poster: Local Gaussian Process Regression for Real Time Online Model Learning »
Duy Nguyen-Tuong · Matthias Seeger · Jan Peters -
2007 Workshop: Robotics Challenges for Machine Learning »
Jan Peters · Marc Toussaint -
2006 Workshop: Towards a New Reinforcement Learning? »
Jan Peters · Stefan Schaal · Drew Bagnell