Timezone: »

 
Differentiable Implicit Layers
Andreas Look · Simona Doneva · Melih Kandemir · Rainer Gemulla · Jan Peters

In this paper, we introduce an efficient backpropagation scheme for non-constrained implicit functions. These functions are parametrized by a set of learnable weights and may optionally depend on some input; making them perfectly suitable as learnable layer in a neural network. We demonstrate our scheme on different applications: (i) neural ODEs with the implicit Euler method, and (ii) system identification in model predictive control.

Author Information

Andreas Look (Bosch Center for Artificial Intelligence)
Simona Doneva (University of Mannheim)
Melih Kandemir (Bosch Center for Artificial Intelligence (BCAI))
Rainer Gemulla (Universität Mannheim)
Jan Peters (TU Darmstadt & MPI Intelligent Systems)

Jan Peters is a full professor (W3) for Intelligent Autonomous Systems at the Computer Science Department of the Technische Universitaet Darmstadt and at the same time a senior research scientist and group leader at the Max-Planck Institute for Intelligent Systems, where he heads the interdepartmental Robot Learning Group. Jan Peters has received the Dick Volz Best 2007 US PhD Thesis Runner-Up Award, the Robotics: Science & Systems - Early Career Spotlight, the INNS Young Investigator Award, and the IEEE Robotics & Automation Society‘s Early Career Award as well as numerous best paper awards. In 2015, he was awarded an ERC Starting Grant. Jan Peters has studied Computer Science, Electrical, Mechanical and Control Engineering at TU Munich and FernUni Hagen in Germany, at the National University of Singapore (NUS) and the University of Southern California (USC). He has received four Master‘s degrees in these disciplines as well as a Computer Science PhD from USC.

More from the Same Authors