Timezone: »
Sequential assembly with geometric primitives has drawn attention in robotics and 3D vision since it yields a practical blueprint to construct a target shape. However, due to its combinatorial property, a greedy method falls short of generating a sequence of volumetric primitives. To alleviate this consequence induced by a huge number of feasible combinations, we propose a combinatorial 3D shape generation framework. The proposed framework reflects an important aspect of human generation processes in real life -- we often create a 3D shape by sequentially assembling unit primitives with geometric constraints. To find the desired combination regarding combination evaluations, we adopt Bayesian optimization, which is able to exploit and explore efficiently the feasible regions constrained by the current primitive placements. An evaluation function conveys global structure guidance for an assembly process and stability in terms of gravity and external forces simultaneously. Experimental results demonstrate that our method successfully generates combinatorial 3D shapes and simulates more realistic generation processes. We also introduce a new dataset for combinatorial 3D shape generation.
Author Information
Jungtaek Kim (POSTECH)
Hyunsoo Chung (POSTECH)
Jinhwi Lee (POSTECH)
Minsu Cho (POSTECH)
Jaesik Park (POSTECH)
More from the Same Authors
-
2020 : Session A, Poster 5: Fragment Relation Networks For Geometric Shape Assembly »
Jinhwi Lee -
2020 : Session A, Poster 5: Fragment Relation Networks For Geometric Shape Assembly »
Jungtaek Kim -
2022 : Substructure-Atom Cross Attention for Molecular Representation Learning »
Jiye Kim · Seungbeom Lee · Dongwoo Kim · Sungsoo Ahn · Jaesik Park -
2022 : SeLCA: Self-Supervised Learning of Canonical Axis »
Seungwook Kim · Yoonwoo Jeong · Chunghyun Park · Jaesik Park · Minsu Cho -
2022 Poster: Learning Debiased Classifier with Biased Committee »
Nayeong Kim · SEHYUN HWANG · Sungsoo Ahn · Jaesik Park · Suha Kwak -
2022 Poster: PeRFception: Perception using Radiance Fields »
Yoonwoo Jeong · Seungjoo Shin · Junha Lee · Chris Choy · Anima Anandkumar · Minsu Cho · Jaesik Park -
2022 Poster: Peripheral Vision Transformer »
Juhong Min · Yucheng Zhao · Chong Luo · Minsu Cho -
2022 Poster: A Rotated Hyperbolic Wrapped Normal Distribution for Hierarchical Representation Learning »
Seunghyuk Cho · Juyong Lee · Jaesik Park · Dongwoo Kim -
2022 Poster: Draft-and-Revise: Effective Image Generation with Contextual RQ-Transformer »
Doyup Lee · Chiheon Kim · Saehoon Kim · Minsu Cho · WOOK SHIN HAN -
2021 Poster: Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning »
Hyunsoo Chung · Jungtaek Kim · Boris Knyazev · Jinhwi Lee · Graham Taylor · Jaesik Park · Minsu Cho -
2021 Poster: Rebooting ACGAN: Auxiliary Classifier GANs with Stable Training »
Minguk Kang · Woohyeon Shim · Minsu Cho · Jaesik Park -
2021 Poster: Relational Self-Attention: What's Missing in Attention for Video Understanding »
Manjin Kim · Heeseung Kwon · CHUNYU WANG · Suha Kwak · Minsu Cho -
2020 : Poster Session A: 3:00 AM - 4:30 AM PST »
Taras Khakhulin · Ravichandra Addanki · Jinhwi Lee · Jungtaek Kim · Piotr Januszewski · Konrad Czechowski · Francesco Landolfi · Lovro Vrček · Oren Neumann · Claudius Gros · Betty Fabre · Lukas Faber · Lucas Anquetil · Alberto Franzin · Tommaso Bendinelli · Sergey Bartunov -
2020 Poster: CircleGAN: Generative Adversarial Learning across Spherical Circles »
Woohyeon Shim · Minsu Cho -
2020 Poster: Bootstrapping neural processes »
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh -
2020 Poster: ContraGAN: Contrastive Learning for Conditional Image Generation »
Minguk Kang · Jaesik Park -
2019 Poster: Mining GOLD Samples for Conditional GANs »
Sangwoo Mo · Chiheon Kim · Sungwoong Kim · Minsu Cho · Jinwoo Shin