Timezone: »
Numerical simulations have revolutionized material design. However, although simulations excel at mapping an input material to its output property, their direct application to inverse design (i.e., mapping an input property to an optimal output material) has traditionally been limited by their high computing cost and lack of differentiability—so that simulations are often replaced by surrogate machine learning models in inverse design problems. Here, taking the example of the inverse design of a porous matrix featuring targeted sorption isotherm, we introduce a computational inverse design framework that addresses these challenges. We reformulate a lattice density functional theory of sorption as a differentiable simulation programmed on TensorFlow platform that leverages automated end-to-end differentiation. Thanks to its differentiability, the simulation is used to directly train a deep generative model, which outputs an optimal porous matrix based on an arbitrary input sorption isotherm curve. Importantly, this inverse design pipeline leverages for the first time the power of tensor processing units (TPU)—an emerging family of dedicated chips, which, although they are specialized in deep learning, are flexible enough for intensive scientific simulations. This approach holds promise to accelerate inverse materials design.
Author Information
HAN LIU (University of California, Los Angeles)
Yuhan Liu (University of California, Los Angeles)
Zhangji Zhao (University of California, Los Angeles)
Samuel Schoenholz (Google Brain)
Ekin Dogus Cubuk (Google Brain)
Mathieu Bauchy (University of California, Los Angeles)
More from the Same Authors
-
2020 : Decoding the genome of cement by Gaussian Process Regression »
Yu Song · Yongzhe Wang · Kaixin Wang · Mathieu Bauchy -
2021 Spotlight: Revisiting ResNets: Improved Training and Scaling Strategies »
Irwan Bello · William Fedus · Xianzhi Du · Ekin Dogus Cubuk · Aravind Srinivas · Tsung-Yi Lin · Jonathon Shlens · Barret Zoph -
2021 : Fast Finite Width Neural Tangent Kernel »
Roman Novak · Jascha Sohl-Dickstein · Samuel Schoenholz -
2022 : Invited talk: E. Doğuş Çubuk, "Scaling up material discovery via deep learning" »
Ekin Dogus Cubuk · Siddharth Mishra-Sharma -
2021 Poster: Revisiting ResNets: Improved Training and Scaling Strategies »
Irwan Bello · William Fedus · Xianzhi Du · Ekin Dogus Cubuk · Aravind Srinivas · Tsung-Yi Lin · Jonathon Shlens · Barret Zoph -
2020 Poster: Finite Versus Infinite Neural Networks: an Empirical Study »
Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein -
2020 Spotlight: Finite Versus Infinite Neural Networks: an Empirical Study »
Jaehoon Lee · Samuel Schoenholz · Jeffrey Pennington · Ben Adlam · Lechao Xiao · Roman Novak · Jascha Sohl-Dickstein -
2020 Poster: FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence »
Kihyuk Sohn · David Berthelot · Nicholas Carlini · Zizhao Zhang · Han Zhang · Colin A Raffel · Ekin Dogus Cubuk · Alexey Kurakin · Chun-Liang Li -
2020 Poster: RandAugment: Practical Automated Data Augmentation with a Reduced Search Space »
Ekin Dogus Cubuk · Barret Zoph · Jonathon Shlens · Quoc V Le -
2020 Poster: JAX MD: A Framework for Differentiable Physics »
Samuel Schoenholz · Ekin Dogus Cubuk -
2020 Spotlight: JAX MD: A Framework for Differentiable Physics »
Samuel Schoenholz · Ekin Dogus Cubuk -
2020 Poster: Rethinking Pre-training and Self-training »
Barret Zoph · Golnaz Ghiasi · Tsung-Yi Lin · Yin Cui · Hanxiao Liu · Ekin Dogus Cubuk · Quoc V Le -
2020 Oral: Rethinking Pre-training and Self-training »
Barret Zoph · Golnaz Ghiasi · Tsung-Yi Lin · Yin Cui · Hanxiao Liu · Ekin Dogus Cubuk · Quoc V Le -
2019 : Afternoon Coffee Break & Poster Session »
Heidi Komkov · Stanislav Fort · Zhaoyou Wang · Rose Yu · Ji Hwan Park · Samuel Schoenholz · Taoli Cheng · Ryan-Rhys Griffiths · Chase Shimmin · Surya Karthik Mukkavili · Philippe Schwaller · Christian Knoll · Yangzesheng Sun · Keiichi Kisamori · Gavin Graham · Gavin Portwood · Hsin-Yuan Huang · Paul Novello · Moritz Munchmeyer · Anna Jungbluth · Daniel Levine · Ibrahim Ayed · Steven Atkinson · Jan Hermann · Peter Grönquist · · Priyabrata Saha · Yannik Glaser · Lingge Li · Yutaro Iiyama · Rushil Anirudh · Maciej Koch-Janusz · Vikram Sundar · Francois Lanusse · Auralee Edelen · Jonas Köhler · Jacky H. T. Yip · jiadong guo · Xiangyang Ju · Adi Hanuka · Adrian Albert · Valentina Salvatelli · Mauro Verzetti · Javier Duarte · Eric Moreno · Emmanuel de Bézenac · Athanasios Vlontzos · Alok Singh · Thomas Klijnsma · Brad Neuberg · Paul Wright · Mustafa Mustafa · David Schmidt · Steven Farrell · Hao Sun -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Keun Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 : JAX, M.D.: End-to-End Differentiable, Hardware Accelerated, Molecular Dynamics in Pure Python »
Samuel Schoenholz -
2019 Poster: Wide Neural Networks of Any Depth Evolve as Linear Models Under Gradient Descent »
Jaehoon Lee · Lechao Xiao · Samuel Schoenholz · Yasaman Bahri · Roman Novak · Jascha Sohl-Dickstein · Jeffrey Pennington -
2019 Poster: A Fourier Perspective on Model Robustness in Computer Vision »
Dong Yin · Raphael Gontijo Lopes · Jonathon Shlens · Ekin Dogus Cubuk · Justin Gilmer -
2019 Poster: MetaInit: Initializing learning by learning to initialize »
Yann Dauphin · Samuel Schoenholz -
2018 Poster: Realistic Evaluation of Deep Semi-Supervised Learning Algorithms »
Avital Oliver · Augustus Odena · Colin A Raffel · Ekin Dogus Cubuk · Ian Goodfellow -
2018 Spotlight: Realistic Evaluation of Deep Semi-Supervised Learning Algorithms »
Avital Oliver · Augustus Odena · Colin A Raffel · Ekin Dogus Cubuk · Ian Goodfellow -
2017 Poster: Mean Field Residual Networks: On the Edge of Chaos »
Ge Yang · Samuel Schoenholz -
2017 Poster: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice »
Jeffrey Pennington · Samuel Schoenholz · Surya Ganguli