Timezone: »
Session
Orals & Spotlights Track 15: COVID/Applications/Composition
José Miguel Hernández-Lobato · Oliver Stegle
Wed Dec 09 06:00 AM -- 09:00 AM (PST) @
Author Information
José Miguel Hernández-Lobato (University of Cambridge)
Oliver Stegle (German Cancer Research Center (DKFZ) & EMBL Heidelberg)
More from the Same Authors
-
2021 : A Fresh Look at De Novo Molecular Design Benchmarks »
Austin Tripp · Gregor Simm · José Miguel Hernández-Lobato -
2021 : Depth Uncertainty Networks for Active Learning »
Chelsea Murray · James Allingham · Javier Antorán · José Miguel Hernández-Lobato -
2022 : Flow Annealed Importance Sampling Bootstrap »
Laurence Midgley · Vincent Stimper · Gregor Simm · Bernhard Schölkopf · José Miguel Hernández-Lobato -
2022 : Meta-learning Adaptive Deep Kernel Gaussian Processes for Molecular Property Prediction »
Wenlin Chen · Austin Tripp · José Miguel Hernández-Lobato -
2022 : Learning Generative Models with Invariance to Symmetries »
James Allingham · Javier Antorán · Shreyas Padhy · Eric Nalisnick · José Miguel Hernández-Lobato -
2022 : Panel »
Roman Garnett · José Miguel Hernández-Lobato · Eytan Bakshy · Syrine Belakaria · Stefanie Jegelka -
2022 Poster: Missing Data Imputation and Acquisition with Deep Hierarchical Models and Hamiltonian Monte Carlo »
Ignacio Peis · Chao Ma · José Miguel Hernández-Lobato -
2021 Workshop: Deep Generative Models and Downstream Applications »
José Miguel Hernández-Lobato · Yingzhen Li · Yichuan Zhang · Cheng Zhang · Austin Tripp · Weiwei Pan · Oren Rippel -
2021 Poster: Functional Variational Inference based on Stochastic Process Generators »
Chao Ma · José Miguel Hernández-Lobato -
2021 Poster: Improving black-box optimization in VAE latent space using decoder uncertainty »
Pascal Notin · José Miguel Hernández-Lobato · Yarin Gal -
2020 Workshop: Machine Learning for Molecules »
José Miguel Hernández-Lobato · Matt Kusner · Brooks Paige · Marwin Segler · Jennifer Wei -
2020 : Jose Miguel Hernandez Lobato »
José Miguel Hernández-Lobato -
2020 Poster: Compressing Images by Encoding Their Latent Representations with Relative Entropy Coding »
Gergely Flamich · Marton Havasi · José Miguel Hernández-Lobato -
2020 Poster: Sample-Efficient Optimization in the Latent Space of Deep Generative Models via Weighted Retraining »
Austin Tripp · Erik Daxberger · José Miguel Hernández-Lobato -
2020 Poster: Depth Uncertainty in Neural Networks »
Javier Antorán · James Allingham · José Miguel Hernández-Lobato -
2020 Poster: VAEM: a Deep Generative Model for Heterogeneous Mixed Type Data »
Chao Ma · Sebastian Tschiatschek · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2020 Poster: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2020 Spotlight: Barking up the right tree: an approach to search over molecule synthesis DAGs »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: Bayesian Batch Active Learning as Sparse Subset Approximation »
Robert Pinsler · Jonathan Gordon · Eric Nalisnick · José Miguel Hernández-Lobato -
2019 Poster: Icebreaker: Element-wise Efficient Information Acquisition with a Bayesian Deep Latent Gaussian Model »
Wenbo Gong · Sebastian Tschiatschek · Sebastian Nowozin · Richard Turner · José Miguel Hernández-Lobato · Cheng Zhang -
2019 Poster: A Model to Search for Synthesizable Molecules »
John Bradshaw · Brooks Paige · Matt Kusner · Marwin Segler · José Miguel Hernández-Lobato -
2019 Poster: Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning »
David Janz · Jiri Hron · Przemysław Mazur · Katja Hofmann · José Miguel Hernández-Lobato · Sebastian Tschiatschek -
2018 Workshop: Machine Learning for Molecules and Materials »
José Miguel Hernández-Lobato · Klaus-Robert Müller · Brooks Paige · Matt Kusner · Stefan Chmiela · Kristof Schütt -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Poster: Inference in Deep Gaussian Processes using Stochastic Gradient Hamiltonian Monte Carlo »
Marton Havasi · José Miguel Hernández-Lobato · Juan J. Murillo-Fuentes -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 Workshop: Bayesian optimization for science and engineering »
Ruben Martinez-Cantin · José Miguel Hernández-Lobato · Javier Gonzalez -
2017 : Closing remarks »
José Miguel Hernández-Lobato -
2017 Workshop: Machine Learning for Molecules and Materials »
Kristof Schütt · Klaus-Robert Müller · Anatole von Lilienfeld · José Miguel Hernández-Lobato · Klaus-Robert Müller · Alan Aspuru-Guzik · Bharath Ramsundar · Matt Kusner · Brooks Paige · Stefan Chmiela · Alexandre Tkatchenko · Anatole von Lilienfeld · Koji Tsuda -
2016 : Panel Discussion »
Shakir Mohamed · David Blei · Ryan Adams · José Miguel Hernández-Lobato · Ian Goodfellow · Yarin Gal -
2016 : Automatic Chemical Design using Variational Autoencoders »
José Miguel Hernández-Lobato -
2016 : Alpha divergence minimization for Bayesian deep learning »
José Miguel Hernández-Lobato -
2015 Poster: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2015 Spotlight: Stochastic Expectation Propagation »
Yingzhen Li · José Miguel Hernández-Lobato · Richard Turner -
2014 Poster: Predictive Entropy Search for Efficient Global Optimization of Black-box Functions »
José Miguel Hernández-Lobato · Matthew Hoffman · Zoubin Ghahramani -
2014 Poster: Gaussian Process Volatility Model »
Yue Wu · José Miguel Hernández-Lobato · Zoubin Ghahramani -
2014 Spotlight: Predictive Entropy Search for Efficient Global Optimization of Black-box Functions »
José Miguel Hernández-Lobato · Matthew Hoffman · Zoubin Ghahramani -
2013 Poster: Learning Feature Selection Dependencies in Multi-task Learning »
Daniel Hernández-lobato · José Miguel Hernández-Lobato -
2013 Poster: Gaussian Process Conditional Copulas with Applications to Financial Time Series »
José Miguel Hernández-Lobato · James R Lloyd · Daniel Hernández-lobato -
2012 Poster: Collaborative Gaussian Processes for Preference Learning »
Neil Houlsby · José Miguel Hernández-Lobato · Ferenc Huszar · Zoubin Ghahramani -
2012 Poster: Semi-Supervised Domain Adaptation with Non-Parametric Copulas »
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf -
2012 Spotlight: Semi-Supervised Domain Adaptation with Non-Parametric Copulas »
David Lopez-Paz · José Miguel Hernández-Lobato · Bernhard Schölkopf -
2011 Poster: Robust Multi-Class Gaussian Process Classification »
Daniel Hernández-lobato · José Miguel Hernández-Lobato · Pierre Dupont -
2007 Poster: Regulator Discovery from Gene Expression Time Series of Malaria Parasites: a Hierachical Approach »
José Miguel Hernández-Lobato · Tjeerd M Dijkstra · Tom Heskes