Timezone: »
Non-Euclidean Differentially Private Stochastic Convex Optimization, Cristóbal Guzmán
Cristóbal Guzmán
Abstract: Ensuring privacy of users' data in machine learning models has become a crucial requirement in multiple domains. In this respect, differential privacy (DP) is the gold standard, due to its general and rigorous privacy guarantees, as well as its high composability. For the particular case of stochastic convex optimization (SCO), recent efforts have established optimal rates for the excess risk under differential privacy in Euclidean setups. These bounds suffer a polynomial degradation of accuracy with respect to the dimension, which limits their applicability in high-dimensional settings. In this talk, I will present nearly-dimension independent rates on the excess risk for DP-SCO in the $\ell_1$ setup, as well as the investigation of more general $\ell_p$ setups, where $1\leq p\leq \infty$. Based on joint work with Raef Bassily and Anupama Nandi.
Author Information
Cristóbal Guzmán (U of Twente)
More from the Same Authors
-
2023 : Closing Remarks »
Cristóbal Guzmán -
2023 : Contributed Talks 1 »
Cristóbal Guzmán -
2023 Workshop: OPT 2023: Optimization for Machine Learning »
Cristóbal Guzmán · Courtney Paquette · Katya Scheinberg · Aaron Sidford · Sebastian Stich -
2023 : Opening Remarks »
Cristóbal Guzmán -
2022 : Contributed Talks 3 »
Cristóbal Guzmán · Fangshuo Liao · Vishwak Srinivasan · Zhiyuan Li -
2022 Workshop: OPT 2022: Optimization for Machine Learning »
Courtney Paquette · Sebastian Stich · Quanquan Gu · Cristóbal Guzmán · John Duchi -
2022 Poster: Stochastic Halpern Iteration with Variance Reduction for Stochastic Monotone Inclusions »
Xufeng Cai · Chaobing Song · Cristóbal Guzmán · Jelena Diakonikolas -
2022 Poster: Differentially Private Generalized Linear Models Revisited »
Raman Arora · Raef Bassily · Cristóbal Guzmán · Michael Menart · Enayat Ullah -
2022 Poster: Between Stochastic and Adversarial Online Convex Optimization: Improved Regret Bounds via Smoothness »
Sarah Sachs · Hedi Hadiji · Tim van Erven · Cristóbal Guzmán -
2021 : Q&A with Cristóbal Guzmán »
Cristóbal Guzmán -
2021 Poster: Best-case lower bounds in online learning »
Cristóbal Guzmán · Nishant Mehta · Ali Mortazavi -
2021 Poster: Differentially Private Stochastic Optimization: New Results in Convex and Non-Convex Settings »
Raef Bassily · Cristóbal Guzmán · Michael Menart -
2020 Poster: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Spotlight: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar