Timezone: »
Please join us in gather.town (see link above). To see the abstracts of the posters presented in this session, please see below the schedule.
Authors/papers presenting posters in gather.town for this session:
Optimum-statistical Collaboration Towards Efficient Black-box Optimization, Wenjie Li
Integer Programming Approaches To Subspace Clustering With Missing Data, Akhilesh Soni
Stochastic Learning Equation using Monotone Increasing Resolution of Quantization, Jinwuk Seok
Sign-RIP: A Robust Restricted Isometry Property for Low-rank Matrix Recovery, Jianhao Ma
Farkas' Theorem of the Alternative for Prior Knowledge in Deep Networks, Jeffery Kline
Towards Robust and Automatic Hyper-Parameter Tunning, Mahdi S. Hosseini
High Probability Step Size Lower Bound for Adaptive Stochastic Optimization, Miaolan Xie
Stochastic Polyak Stepsize with a Moving Target, Robert M Gower
A Stochastic Momentum Method for Min-max Bilevel Optimization, Quanqi Hu
Deep Neural Networks pruning via the Structured Perspective Regularization, Matteo Cacciola
Efficient Calibration of Multi-Agent Market Simulators from Time Series with Bayesian Optimization, Yuanlu Bai
DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization, Boyue Li
Policy Mirror Descent for Regularized RL: A Generalized Framework with Linear Convergence, Shicong Cen
Simulated Annealing for Neural Architecture Search, Shentong Mo
Acceleration and Stability of Stochastic Proximal Point Algorithm, Junhyung Lyle Kim
Barzilai and Borwein conjugate gradient method equipped with a non-monotone line search technique, Sajad Fathi Hafshejani
On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging, Chris Junchi Li
Practice-Consistent Analysis of Adam-Style Methods, Zhishuai Guo
Escaping Local Minima With Stochastic Noise, Harsh Vardhan
Optimization with Adaptive Step Size Selection from a Dynamical Systems Perspective, Neha S Wadia
Last-Iterate Convergence of Saddle Point Optimizers via High-Resolution Differential Equations, Tatjana Chavdarova
Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization, Difan Zou
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima, Zixiang Chen
Adam vs. SGD: Closing the generalization gap on image classification, Aman Gupta
Heavy-tailed noise does not explain the gap between SGD and Adam on Transformers, Frederik Kunstner
Faster Quasi-Newton Methods for Linear Composition Problems, Betty Shea
The Geometric Occam Razor Implicit in Deep Learning, Benoit Dherin
Random-reshuffled SARAH does not need a full gradient computations, Aleksandr Beznosikov
Author Information
Wenjie Li (Purdue University)
Akhilesh Soni (University of Wisconsin-Madison)
Jinwuk Seok (Electronics and Telecommunications Research Institute)
Jinwuk Seok received the B.S. and M.S. degrees in electrical control engineering, Seoul, Korea in 1993 and in 1995, respectively, and the Ph.D. degree in electrical engineering also Seoul, Korea in 1998. He has been a principal members of engineering staff at Electronics and Telecommunications Research Institute (ETRI) in Korea since 2000 and an adjunct professor of computer software engineering department at university of science and technology (UST) in Korea since 2009. His research interests include video compression, machine learning, and stochastic nonlinear control.
Jianhao Ma (University of Michigan)
Jeffery Kline (American Family Insurance)
Mathieu Tuli (University of Toronto and Vector Institute)
Miaolan Xie (Cornell University)
Robert Gower (Flatiron Institute)
Quanqi Hu (University of Iowa)
Matteo Cacciola (Polytechnique Montreal)
Yuanlu Bai (Columbia University)
Boyue Li (Carnegie Mellon University)
Wenhao Zhan (Princeton University)
Shentong Mo (CMU)
Junhyung Lyle Kim (Rice University)
Sajad Fathi Hafshejani (University of Lethbridgr)
Chris Junchi Li (University of California, Berkeley)
Zhishuai Guo (University of Iowa)
Harshvardhan Harshvardhan (UCSD)
Neha Wadia (University of California, Berkeley)
Tatjana Chavdarova (UC Berkeley)
Difan Zou (University of California, Los Angeles)
Zixiang Chen (UCLA)
Aman Gupta (LinkedIn)
Jacques Chen (University of British Columbia)
Betty Shea (University of British Columbia)
Benoit Dherin (Google)
Aleksandr Beznosikov (Moscow Institute of Physics and Technology)
More from the Same Authors
-
2021 : Integer Programming Approaches To Subspace Clustering With Missing Data »
Akhilesh Soni · Daniel Pimentel-Alarcón -
2021 : Integer Programming Approaches To Subspace Clustering With Missing Data »
Akhilesh Soni · Daniel Pimentel-Alarcón -
2021 : Farkas' Theorem of the Alternative for Prior Knowledge in Deep Networks »
Jeffery Kline · Joseph Bockhorst -
2021 : Farkas' Theorem of the Alternative for Prior Knowledge in Deep Networks »
Jeffery Kline · Joseph Bockhorst -
2021 : Decentralized Personalized Federated Learning: Lower Bounds and Optimal Algorithm for All Personalization Modes »
Abdurakhmon Sadiev · Ekaterina Borodich · Darina Dvinskikh · Aleksandr Beznosikov · Alexander Gasnikov -
2021 : Decentralized Personalized Federated Learning: Lower Bounds and Optimal Algorithm for All Personalization Modes »
Abdurakhmon Sadiev · Ekaterina Borodich · Darina Dvinskikh · Aleksandr Beznosikov · Alexander Gasnikov -
2021 : Optimization with Adaptive Step Size Selection from a Dynamical Systems Perspective »
Neha Wadia · Michael Jordan · Michael Muehlebach -
2021 : Optimization with Adaptive Step Size Selection from a Dynamical Systems Perspective »
Neha Wadia · Michael Jordan · Michael Muehlebach -
2021 : Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization »
Difan Zou · Yuan Cao · Yuanzhi Li · Quanquan Gu -
2021 : Understanding the Generalization of Adam in Learning Neural Networks with Proper Regularization »
Difan Zou · Yuan Cao · Yuanzhi Li · Quanquan Gu -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : Heavy-tailed noise does not explain the gap between SGD and Adam on Transformers »
Jacques Chen · Frederik Kunstner · Mark Schmidt -
2021 : Heavy-tailed noise does not explain the gap between SGD and Adam on Transformers »
Jacques Chen · Frederik Kunstner · Mark Schmidt -
2021 : Acceleration and Stability of the Stochastic Proximal Point Algorithm »
Junhyung Lyle Kim · Panos Toulis · Anastasios Kyrillidis -
2021 : Acceleration and Stability of the Stochastic Proximal Point Algorithm »
Junhyung Lyle Kim · Panos Toulis · Anastasios Kyrillidis -
2021 : Barzilai and Borwein conjugate gradient method equipped with a non-monotone line search technique »
Sajad Fathi Hafshejani · Daya Gaur · Shahadat Hossain · Robert Benkoczi -
2021 : Optimum-statistical Collaboration Towards Efficient Black-boxOptimization »
Wenjie Li · Chi-Hua Wang · Guang Cheng -
2021 : Stochastic Learning Equation using Monotone Increasing Resolution of Quantization »
Jinwuk Seok · -
2021 : Sign-RIP: A Robust Restricted Isometry Property for Low-rank Matrix Recovery »
Jianhao Ma · Salar Fattahi -
2021 : Practice-Consistent Analysis of Adam-Style Methods »
Zhishuai Guo · Yi Xu · Wotao Yin · Rong Jin · Tianbao Yang -
2021 : Towards Robust and Automatic Hyper-Parameter Tunning »
Mathieu Tuli · Mahdi Hosseini · Konstantinos N Plataniotis -
2021 : Random-reshuffled SARAH does not need a full gradient computations »
Aleksandr Beznosikov · Martin Takac -
2021 : The Geometric Occam Razor Implicit in Deep Learning »
Benoit Dherin · Michael Munn · David Barrett -
2021 : Escaping Local Minima With Stochastic Noise »
Harshvardhan Harshvardhan · Sebastian Stich -
2021 : Stochastic Polyak Stepsize with a Moving Target »
Robert Gower · Aaron Defazio · Mike Rabbat -
2021 : Last-Iterate Convergence of Saddle Point Optimizers via High-Resolution Differential Equations »
Tatjana Chavdarova · Michael Jordan · Emmanouil Zampetakis -
2021 : A Stochastic Momentum Method for Min-max Bilevel Optimization »
Quanqi Hu · Bokun Wang · Tianbao Yang -
2021 : Deep Neural Networks pruning via the Structured Perspective Regularization »
Matteo Cacciola · Andrea Lodi · Xinlin Li -
2021 : Efficient Calibration of Multi-Agent Market Simulators from Time Series with Bayesian Optimization »
Yuanlu Bai · Svitlana Vyetrenko · Henry Lam · Tucker Balch -
2021 : Faster Perturbed Stochastic Gradient Methods for Finding Local Minima »
Zixiang Chen · Dongruo Zhou · Quanquan Gu -
2021 : Adam vs. SGD: Closing the generalization gap on image classification »
Aman Gupta · Rohan Ramanath · Jun Shi · Sathiya Keerthi -
2021 : Simulated Annealing for Neural Architecture Search »
Shentong Mo · Jingfei Xia · Pinxu Ren -
2021 : Faster Quasi-Newton Methods for Linear Composition Problems »
Betty Shea · Mark Schmidt -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : Policy Mirror Descent for Regularized RL: A Generalized Framework with Linear Convergence »
Wenhao Zhan · Shicong Cen · Baihe Huang · Yuxin Chen · Jason Lee · Yuejie Chi -
2021 : Policy Mirror Descent for Regularized RL: A Generalized Framework with Linear Convergence »
Wenhao Zhan · Shicong Cen · Baihe Huang · Yuxin Chen · Jason Lee · Yuejie Chi -
2021 : Adaptive Fine-tuning for Vision and Language Pre-trained Models »
Shentong Mo · Jingfei Xia · Ihor Markevych -
2021 : Decentralized Personalized Federated Min-Max Problems »
Ekaterina Borodich · Aleksandr Beznosikov · Abdurakhmon Sadiev · Vadim Sushko · Alexander Gasnikov -
2021 : Learning Two-Player Mixture Markov Games: Kernel Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2021 : Multi-modal Self-supervised Pre-training for Large-scale Genome Data »
Shentong Mo · Xi Fu · Chenyang Hong · Yizhen Chen · Yuxuan Zheng · Xiangru Tang · Yanyan Lan · Zhiqiang Shen · Eric Xing -
2021 : The Peril of Popular Deep Learning Uncertainty Estimation Methods »
Yehao Liu · Matteo Pagliardini · Tatjana Chavdarova · Sebastian Stich -
2021 Workshop: 2nd Workshop on Self-Supervised Learning: Theory and Practice »
Pengtao Xie · Ishan Misra · Pulkit Agrawal · Abdelrahman Mohamed · Shentong Mo · Youwei Liang · Jeannette Bohg · Kristina N Toutanova -
2021 : Contributed talks in Session 4 (Zoom) »
Quanquan Gu · Agnieszka Słowik · Jacques Chen · Neha Wadia · Difan Zou -
2021 : Contributed talks in Session 3 (Zoom) »
Oliver Hinder · Wenhao Zhan · Akhilesh Soni · Grigory Malinovsky · Boyue Li -
2021 : Contributed Talks in Session 2 (Zoom) »
Courtney Paquette · Chris Junchi Li · Jeffery Kline · Junhyung Lyle Kim · Pascal Esser -
2021 Poster: Distributed Saddle-Point Problems Under Data Similarity »
Aleksandr Beznosikov · Gesualdo Scutari · Alexander Rogozin · Alexander Gasnikov -
2021 Poster: An Online Method for A Class of Distributionally Robust Optimization with Non-convex Objectives »
Qi Qi · Zhishuai Guo · Yi Xu · Rong Jin · Tianbao Yang -
2020 : Contributed talks in Session 3 (Zoom) »
Mark Schmidt · Zhan Gao · Wenjie Li · Preetum Nakkiran · Denny Wu · Chengrun Yang -
2020 : Contributed Video: Variance Reduction on Adaptive Stochastic Mirror Descent, Wenjie Li »
Wenjie Li -
2020 : Poster Session 2 (gather.town) »
Sharan Vaswani · Nicolas Loizou · Wenjie Li · Preetum Nakkiran · Zhan Gao · Sina Baghal · Jingfeng Wu · Roozbeh Yousefzadeh · Jinyi Wang · Jing Wang · Cong Xie · Anastasia Borovykh · Stanislaw Jastrzebski · Soham Dan · Yiliang Zhang · Mark Tuddenham · Sarath Pattathil · Ievgen Redko · Jeremy Cohen · Yasaman Esfandiari · Zhanhong Jiang · Mostafa ElAraby · Chulhee Yun · Michael Psenka · Robert Gower · Xiaoyu Wang -
2020 : Spotlight: Weighting Vectors for Machine Learning: Numerical Harmonic Analysis Applied to Boundary Detection »
Eric Bunch · Jeffery Kline · Daniel Dickinson · Glenn Fung -
2020 Poster: A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks »
Zixiang Chen · Yuan Cao · Quanquan Gu · Tong Zhang -
2019 : Lunch break and poster »
Felix Sattler · Khaoula El Mekkaoui · Neta Shoham · Cheng Hong · Florian Hartmann · Boyue Li · Daliang Li · Sebastian Caldas Rivera · Jianyu Wang · Kartikeya Bhardwaj · Tribhuvanesh Orekondy · YAN KANG · Dashan Gao · Mingshu Cong · Xin Yao · Songtao Lu · JIAHUAN LUO · Shicong Cen · Peter Kairouz · Yihan Jiang · Tzu Ming Hsu · Aleksei Triastcyn · Yang Liu · Ahmed Khaled Ragab Bayoumi · Zhicong Liang · Boi Faltings · Seungwhan Moon · Suyi Li · Tao Fan · Tianchi Huang · Chunyan Miao · Hang Qi · Matthew Brown · Lucas Glass · Junpu Wang · Wei Chen · Radu Marculescu · tomer avidor · Xueyang Wu · Mingyi Hong · Ce Ju · John Rush · Ruixiao Zhang · Youchi ZHOU · Françoise Beaufays · Yingxuan Zhu · Lei Xia -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: Reducing Noise in GAN Training with Variance Reduced Extragradient »
Tatjana Chavdarova · Gauthier Gidel · François Fleuret · Simon Lacoste-Julien -
2019 Poster: Efficient Smooth Non-Convex Stochastic Compositional Optimization via Stochastic Recursive Gradient Descent »
Wenqing Hu · Chris Junchi Li · Xiangru Lian · Ji Liu · Huizhuo Yuan -
2019 Poster: Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks »
Difan Zou · Ziniu Hu · Yewen Wang · Song Jiang · Yizhou Sun · Quanquan Gu -
2019 Poster: RSN: Randomized Subspace Newton »
Robert Gower · Dmitry Kovalev · Felix Lieder · Peter Richtarik -
2019 Poster: Towards closing the gap between the theory and practice of SVRG »
Othmane Sebbouh · Nidham Gazagnadou · Samy Jelassi · Francis Bach · Robert Gower -
2019 Poster: Stochastic Gradient Hamiltonian Monte Carlo Methods with Recursive Variance Reduction »
Difan Zou · Pan Xu · Quanquan Gu -
2019 Poster: An Improved Analysis of Training Over-parameterized Deep Neural Networks »
Difan Zou · Quanquan Gu -
2018 Poster: Nonparametric Density Estimation under Adversarial Losses »
Shashank Singh · Ananya Uppal · Boyue Li · Chun-Liang Li · Manzil Zaheer · Barnabas Poczos -
2018 Poster: SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator »
Cong Fang · Chris Junchi Li · Zhouchen Lin · Tong Zhang -
2018 Spotlight: SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator »
Cong Fang · Chris Junchi Li · Zhouchen Lin · Tong Zhang -
2017 Poster: Diffusion Approximations for Online Principal Component Estimation and Global Convergence »
Chris Junchi Li · Mengdi Wang · Tong Zhang -
2017 Oral: Diffusion Approximations for Online Principal Component Estimation and Global Convergence »
Chris Junchi Li · Mengdi Wang · Tong Zhang -
2017 Poster: Predictive State Recurrent Neural Networks »
Carlton Downey · Ahmed Hefny · Byron Boots · Geoffrey Gordon · Boyue Li -
2016 Poster: Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes »
Chris Junchi Li · Zhaoran Wang · Han Liu