Timezone: »
When theorizing the causal effects that algorithmic decisions have on a population, an important modeling choice arises. We can model the change to a population in the aggregate, or we can model the response to a decision rule at the individual level. Standard economic microfoundations, for instance, ground the response in the utility-maximizing behavior of individuals.
Providing context from sociological and economic theory, I will argue why this methodological problem is of significant importance to machine learning. I will focus on the relationships and differences between two recent lines of work, called strategic classification and performative prediction. While performative prediction takes a macro-level perspective on distribution shifts induced by algorithmic predictions, strategic classification builds on standard economic microfoundations. Based on work with Meena Jagadeesan and Celestine Mendler-Dünner, I will discuss the serious shortcomings of standard microfoundations in the context of machine learning and speculate about the alternatives that we have.
Author Information
Moritz Hardt (University of California, Berkeley)
More from the Same Authors
-
2021 Oral: Retiring Adult: New Datasets for Fair Machine Learning »
Frances Ding · Moritz Hardt · John Miller · Ludwig Schmidt -
2021 Poster: Retiring Adult: New Datasets for Fair Machine Learning »
Frances Ding · Moritz Hardt · John Miller · Ludwig Schmidt -
2020 : Invited Talk 7: Prediction Dynamics »
Moritz Hardt -
2020 : Tutorial: A brief tutorial on causality and fair decision making »
Moritz Hardt -
2020 Poster: Stochastic Optimization for Performative Prediction »
Celestine Mendler-Dünner · Juan Perdomo · Tijana Zrnic · Moritz Hardt -
2019 Poster: Model Similarity Mitigates Test Set Overuse »
Horia Mania · John Miller · Ludwig Schmidt · Moritz Hardt · Benjamin Recht -
2019 Poster: A Meta-Analysis of Overfitting in Machine Learning »
Becca Roelofs · Vaishaal Shankar · Benjamin Recht · Sara Fridovich-Keil · Moritz Hardt · John Miller · Ludwig Schmidt