Timezone: »

 
Poster
A PAC-Bayes Analysis of Adversarial Robustness
Paul Viallard · Eric Guillaume VIDOT · Amaury Habrard · Emilie Morvant

Wed Dec 08 12:30 AM -- 02:00 AM (PST) @

We propose the first general PAC-Bayesian generalization bounds for adversarial robustness, that estimate, at test time, how much a model will be invariant to imperceptible perturbations in the input. Instead of deriving a worst-case analysis of the risk of a hypothesis over all the possible perturbations, we leverage the PAC-Bayesian framework to bound the averaged risk on the perturbations for majority votes (over the whole class of hypotheses). Our theoretically founded analysis has the advantage to provide general bounds (i) that are valid for any kind of attacks (i.e., the adversarial attacks), (ii) that are tight thanks to the PAC-Bayesian framework, (iii) that can be directly minimized during the learning phase to obtain a robust model on different attacks at test time.

Author Information

Paul Viallard (University of Saint-Etienne, Lab Hubert Curien)
Eric Guillaume VIDOT (AIRBUS / IRIT)
Amaury Habrard (University of Saint-Etienne, Lab. H Curien, France)
Emilie Morvant (LaHC, University of Saint-Etienne)

More from the Same Authors

  • 2023 Poster: Learning via Wasserstein-Based High Probability Generalization Bounds »
    Paul Viallard · Maxime Haddouche · Umut Simsekli · Benjamin Guedj
  • 2021 Poster: Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound »
    Valentina Zantedeschi · Paul Viallard · Emilie Morvant · Rémi Emonet · Amaury Habrard · Pascal Germain · Benjamin Guedj
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2017 Poster: Joint distribution optimal transportation for domain adaptation »
    Nicolas Courty · Rémi Flamary · Amaury Habrard · Alain Rakotomamonjy
  • 2016 Poster: Mapping Estimation for Discrete Optimal Transport »
    Michaël Perrot · Nicolas Courty · Rémi Flamary · Amaury Habrard
  • 2015 Poster: Regressive Virtual Metric Learning »
    Michaël Perrot · Amaury Habrard
  • 2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
    Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant
  • 2014 Poster: Multilabel Structured Output Learning with Random Spanning Trees of Max-Margin Markov Networks »
    Mario Marchand · Hongyu Su · Emilie Morvant · Juho Rousu · John Shawe-Taylor