Timezone: »
Causal effect identification is concerned with determining whether a causal effect is computable from a combination of qualitative assumptions about the underlying system (e.g., a causal graph) and distributions collected from this system. Many identification algorithms exclusively rely on graphical criteria made of a non-trivial combination of probability axioms, do-calculus, and refined c-factorization (e.g., Lee & Bareinboim, 2020). In a sequence of increasingly sophisticated results, it has been shown how proxy variables can be used to identify certain effects that would not be otherwise recoverable in challenging scenarios through solving matrix equations (e.g., Kuroki & Pearl, 2014; Miao et al., 2018). In this paper, we develop a new causal identification algorithm which utilizes both graphical criteria and matrix equations. Specifically, we first characterize the relationships between certain graphically-driven formulae and matrix multiplications. With such characterizations, we broaden the spectrum of proxy variable based identification conditions and further propose novel intermediary criteria based on the pseudoinverse of a matrix. Finally, we devise a causal effect identification algorithm, which accepts as input a collection of marginal, conditional, and interventional distributions, integrating enriched matrix-based criteria into a graphical identification approach.
Author Information
Sanghack Lee (Penn State University)
Elias Bareinboim (Columbia University)
Related Events (a corresponding poster, oral, or spotlight)
-
2021 Oral: Causal Identification with Matrix Equations »
Tue. Dec 7th 08:40 -- 08:55 AM Room
More from the Same Authors
-
2021 Spotlight: Double Machine Learning Density Estimation for Local Treatment Effects with Instruments »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2021 : Partition-based Local Independence Discovery »
Inwoo Hwang · Byoung-Tak Zhang · Sanghack Lee -
2022 Poster: Causal Identification under Markov equivalence: Calculus, Algorithm, and Completeness »
Amin Jaber · Adele Ribeiro · Jiji Zhang · Elias Bareinboim -
2022 Poster: Online Reinforcement Learning for Mixed Policy Scopes »
Junzhe Zhang · Elias Bareinboim -
2022 Poster: Finding and Listing Front-door Adjustment Sets »
Hyunchai Jeong · Jin Tian · Elias Bareinboim -
2021 : Panel Discussion »
Elias Bareinboim · Mark van der Laan · Claire Vernade -
2021 : TBD (Elias Bareibnboim) »
Elias Bareinboim -
2021 : Invited Talk: Causality and Fairness »
Elias Bareinboim -
2021 Workshop: Causal Inference & Machine Learning: Why now? »
Elias Bareinboim · Bernhard Schölkopf · Terrence Sejnowski · Yoshua Bengio · Judea Pearl -
2021 Oral: Sequential Causal Imitation Learning with Unobserved Confounders »
Daniel Kumor · Junzhe Zhang · Elias Bareinboim -
2021 Poster: Nested Counterfactual Identification from Arbitrary Surrogate Experiments »
Juan Correa · Sanghack Lee · Elias Bareinboim -
2021 Poster: Sequential Causal Imitation Learning with Unobserved Confounders »
Daniel Kumor · Junzhe Zhang · Elias Bareinboim -
2021 Poster: The Causal-Neural Connection: Expressiveness, Learnability, and Inference »
Kevin Xia · Kai-Zhan Lee · Yoshua Bengio · Elias Bareinboim -
2021 Poster: Double Machine Learning Density Estimation for Local Treatment Effects with Instruments »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: Characterizing Optimal Mixed Policies: Where to Intervene and What to Observe »
Sanghack Lee · Elias Bareinboim -
2020 Poster: Causal Discovery from Soft Interventions with Unknown Targets: Characterization and Learning »
Amin Jaber · Murat Kocaoglu · Karthikeyan Shanmugam · Elias Bareinboim -
2020 Poster: Causal Imitation Learning With Unobserved Confounders »
Junzhe Zhang · Daniel Kumor · Elias Bareinboim -
2020 Poster: General Transportability of Soft Interventions: Completeness Results »
Juan Correa · Elias Bareinboim -
2020 Poster: Learning Causal Effects via Weighted Empirical Risk Minimization »
Yonghan Jung · Jin Tian · Elias Bareinboim -
2020 Oral: Causal Imitation Learning With Unobserved Confounders »
Junzhe Zhang · Daniel Kumor · Elias Bareinboim -
2018 Poster: Structural Causal Bandits: Where to Intervene? »
Sanghack Lee · Elias Bareinboim