Timezone: »
Attention maps are popular tools for explaining the decisions of convolutional neural networks (CNNs) for image classification. Typically, for each image of interest, a single attention map is produced, which assigns weights to pixels based on their importance to the classification. We argue that a single attention map provides an incomplete understanding since there are often many other maps that explain a classification equally well. In this paper, we propose to utilize a beam search algorithm to systematically search for multiple explanations for each image. Results show that there are indeed multiple relatively localized explanations for many images. However, naively showing multiple explanations to users can be overwhelming and does not reveal their common and distinct structures. We introduce structured attention graphs (SAGs), which compactly represent sets of attention maps for an image by visualizing how different combinations of image regions impact the confidence of a classifier. An approach to computing a compact and representative SAG for visualization is proposed via diverse sampling. We conduct a user study comparing the use of SAGs to traditional attention maps for answering comparative counterfactual questions about image classifications. Our results show that the users are significantly more accurate when presented with SAGs compared to standard attention map baselines.
Author Information
Vivswan Shitole (Oregon State University)
Fuxin Li (Oregon State University)
Minsuk Kahng (Oregon State University)
Prasad Tadepalli (Oregon State University)
Alan Fern (Oregon State University)
More from the Same Authors
-
2021 Spotlight: Optimal Policies Tend To Seek Power »
Alex Turner · Logan Smith · Rohin Shah · Andrew Critch · Prasad Tadepalli -
2021 : Deep RePReL--Combining Planning and Deep RL for acting in relational domains »
Harsha Kokel · Arjun Manoharan · Sriraam Natarajan · Balaraman Ravindran · Prasad Tadepalli -
2021 Poster: Optimal Policies Tend To Seek Power »
Alex Turner · Logan Smith · Rohin Shah · Andrew Critch · Prasad Tadepalli -
2020 Poster: Avoiding Side Effects in Complex Environments »
Alex Turner · Neale Ratzlaff · Prasad Tadepalli -
2020 Spotlight: Avoiding Side Effects in Complex Environments »
Alex Turner · Neale Ratzlaff · Prasad Tadepalli -
2019 Poster: Topology-Preserving Deep Image Segmentation »
Xiaoling Hu · Fuxin Li · Dimitris Samaras · Chao Chen -
2013 Poster: Symbolic Opportunistic Policy Iteration for Factored-Action MDPs »
Aswin Raghavan · Roni Khardon · Alan Fern · Prasad Tadepalli -
2012 Poster: A Bayesian Approach for Policy Learning from Trajectory Preference Queries »
Aaron Wilson · Alan Fern · Prasad Tadepalli -
2011 Poster: Budgeted Optimization with Concurrent Stochastic-Duration Experiments »
Javad Azimi · Alan Fern · Xiaoli Fern -
2011 Spotlight: Budgeted Optimization with Concurrent Stochastic-Duration Experiments »
Javad Azimi · Alan Fern · Xiaoli Fern -
2011 Poster: Autonomous Learning of Action Models for Planning »
Neville Mehta · Prasad Tadepalli · Alan Fern -
2011 Poster: Inverting Grice's Maxims to Learn Rules from Natural Language Extractions »
M. Shahed Sorower · Thomas Dietterich · Janardhan Rao Doppa · Walker Orr · Prasad Tadepalli · Xiaoli Fern -
2010 Poster: A Computational Decision Theory for Interactive Assistants »
Alan Fern · Prasad Tadepalli